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Abstract

One of the greatest challenges in computational imaging is scaling it to work outside
the lab. The main reasons for that challenge are the strong dependency on precise
calibration, accurate physical models, and long acquisition times. These prevent
practical progress towards medical imaging and seeing through occlusions such as fog
in the wild. This dissertation demonstrates that with data-driven and probabilistic
modeling we can alleviate these dependencies, and pave the way towards real-world
time-resolved computational imaging through extreme scattering conditions using
visible light.

The ability to image through scattering media in the visible part of the electro-
magnetic spectrum holds many applications in various industries. For example, seeing
through fog would enable autonomous robots to operate in challenging weather con-
ditions; augment human driving; and allow airplanes, helicopters, and drones to take
off and land in dense fog conditions. In medical imaging, the ability to see into the
body with near-infrared light would reduce the exposure to ionizing radiation and
provide more clinically meaningful data.

In order to image in diverse and extreme scattering conditions, we develop novel
algorithms inspired by techniques in signal processing, optimization, statistical anal-
ysis, compressive sensing, and machine learning that leverage time-resolved sensing.
More specifically, we demonstrate techniques that computationally leverage all of the
optical signal, including scattered light, as opposed to locking onto a specific part
of the optical signal. Furthermore, we show that by introducing probabilistic formu-
lation to the imaging problem, the resulting system does not require user input for
calibration and priors; this makes our systems more practical for real-world scenarios
and enables them to operate in a wide range of scattering conditions.
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We consider four cases of imaging through scattering media with increasing com-
plexity:

1. A theoretical analysis of time-resolved single pixel imaging, which demonstrates
scene reconstruction even when the entire scene is measured with a single pixel,
an equivalent of simple scattering or a blur that is easy to model.

2. A data-driven calibration invariant technique for imaging through simple scat-
tering (a sheet of paper).

3. Imaging through a thick tissue phantom by utilizing all of the optical signal
with minimal assumptions on the tissue properties.

4. Imaging through a wide range of dense, dynamic, and heterogeneous fog condi-
tions. In that case, we introduce a probabilistic model that is able to recover
the occluded target reflectance and depth without any assumption about the
fog.
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Title: Associate Professor
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4-5 CNN learns to be calibration invariant. The CNN is trained with
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5-3 Recovery of 1D slits target with API. Three slits separated by 1.5,
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Chapter 1

Introduction

In this dissertation we develop probabilistic and data-driven algorithms

that leverage statistics of scattered photons. These algorithms tackle, by

design, the dependency of computational imaging on highly calibrated and

accurate physical models as well as long acquisition times.

The main crutches of computational imaging are the dependency on an accurate

and calibrated physical model, and long acquisition times. This is a result of the

sensitivity of inverse problems to model mismatch and poor signal to noise ratio

(SNR). This prevents computational imaging through scattering with visible light

from scaling to real-world applications.

Imaging through scattering media with visible light is a great challenge with many

potential applications. Fundamentally, the scattering invalidates basic imaging con-

ditions, and as a result, our eyes and cameras cannot focus light from objects that

are occluded by the scattering media. Some examples of materials that are mostly

scattering visible light include fog and tissue (Fig. 1-1). While simply seeing through

such highly scattering materials with our bare eyes is impossible, we show that it is

possible using computational imaging.

Here, we demonstrate, in four different regimes of scattering, that probabilistic

and data-driven algorithms along with time-resolved sensing can alleviate these chal-

lenges. Table 1.1 provides a brief overview of the different scattering conditions con-
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Scattering

Complexity

Number of 

Scattering 

Events

Model and

Assumptions
Geometry Approach Main Contributions

No lens 
(Chapter 3)

Low 1
Simple blur due 

to lensless imaging
Reflection

Compressive 

sensing

• Single pixel time-resolved imaging.

• Optimized compressive sensing.

• Efficient acquisition.

Paper
(Chapter 4)

Medium 2 Single scatter event Reflection Data-driven

• Data-driven computational imaging.

• Calibration invariant imaging.

• Train on simulation, test in reality.

Tissue
(Chapter 5)

High Hundreds
Volumetric scattering,

layered material
Transmission

Blind 

deconvolution

• Imaging through scattering with all 

photons.

• Scattering estimation, independent 

of target.

• Support layered materials.

Fog
(Chapter 6)

Extremely 

high
Hundreds

Arbitrary volumetric 

scattering 

(dynamic, dense, 

heterogeneous)

Reflection
Probabilistic 

modeling

• Probabilistic model and inversion.

• Separation between fog background

and hidden scene signal.

• Prior knowledge and calibration 

aren’t needed.

Table 1.1: Scattering conditions considered in this dissertation. Color indicates the
complexity of the considered scenario. The reflection geometries considered in the top
two rows are easier compared to the bottom row, since there is no back reflectance
due to the scattering.

sidered here, along with the main challenges and the contributions in these regimes.

Specifically, we consider (in increasing complexity) the following conditions:

1. Imaging with a single pixel and without a lens. We provide theoretical analysis

for the case of a single pixel that accumulates contributions from all scene

points, an equivalent to simple scattering. The presented framework enables

acquisition times that are as 50× faster compared to prior techniques.

2. Imaging through paper. We demonstrate a data-driven solution for imaging

through simple scattering (a single scatter event). The technique provides the

ability to recover the pose of an object hidden behind the scattering layer with-

out needing precise calibration or an accurate model and works in real-time.

3. Imaging through tissue phantom. Here we introduce the concept of using the

entire optical signal (All Photons Imaging) to see through scattering. The

presented technique resolves a target through 15 mm tissue phantom at 5.9 mm

resolution with minimal assumptions about the scattering material.

4. Imaging through fog. We tackle the challenge of back reflectance from scattering

media in optical reflection mode. In this case, we need to separate between the
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a) b) c)

Figure 1-1: Examples of scattering media in visible light: a) fog, b) tissue, and
c) optical diffuser.

photons that back-reflect from the fog, and those that hit the target. The

solution is based on a probabilistic imaging framework and is demonstrated in

realistic fog scenarios (dense, dynamic, and heterogeneous) with visibility as

low as 30 cm.

1.1 Why Imaging Through Scattering With Visible

Light?

The ability to see through scattering media holds many applications:

∙ Seeing through fog enables driver augmentation and robust autonomous naviga-

tion in degraded weather conditions. It also improves the safety and robustness

of flying platforms (airplanes, helicopters, and drones) in reduced visibility at

low-level flight.

∙ Imaging through tissue with visible light allows for non-invasive sensing inside

the body with non-ionizing radiation, and potentially better functional imaging

when compared to other modalities such as ultrasound and MRI.

∙ Underwater imaging is commonly challenging due to water turbulence as well as

the presence of various particles in the water such as sand and plankton. The

ability to image underwater would improve the safety and monitoring of un-

derwater installations such as offshore wind farms, gas, oil, and communication

infrastructure.
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∙ Many human–computer interaction systems require a camera that observes the

human, which brings up many privacy issues. It is beneficial to capture the

essential information for the interaction while corrupting the input to preserve

user privacy. This is possible with scattering media such as a sheet of paper or

an optical diffuser to obstruct the camera’s field of view.

∙ Non-line of sight (NLOS) imaging is the general ability to capture information

that is not directly observable by the camera. Examples of this include lensless

imaging and seeing around corners. Lensless imaging has many important ap-

plications in general purpose sensing when the use of a high-quality lens with a

large aperture is not possible.

These capabilities extend the concept of a camera to a general purpose sensor coupled

with an algorithm to reconstruct the desired information.

Traditionally, overcoming optical scattering is achieved by moving away from the

visible part of the spectrum. Examples include radio frequency (RF) for imaging

through fog, and x-ray and ultrasound for seeing into the body. However, the use of

visible light for imaging holds many advantages:

∙ Optical contrast – the ability to distinguish among different materials. With

visible light, a small change in wavelength results in a significant change in

the interaction with different atoms and molecules. Thus, imaging in visible

light enables many applications in medical imaging; for example, distinguishing

between different types of tissue that is very hard or impossible to achieve with

other imaging modalities. Another application is the ability to read road signs

in fog since the color on road signs has significant different spectral signatures

in the visible spectrum.

∙ Resolution – the optical wavelengths (400 nm− 700 nm) are much smaller when

compared to RF (1 cm − 1 m), mm-wave (1 mm − 1 cm), and THz (100 µm −

1 mm). As a result it is easier to capture higher resolution images with smaller

apertures.
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∙ Non-ionizing radiation – this advantage is primarily important for medical ap-

plications. While there is always a tendency to avoid unneeded x-ray exposure,

some patients like pregnant women and children cannot be exposed to x-ray.

Medical imaging with visible light does not suffer from these limitations.

∙ Availability of fluorophores – these are commonly used in functional medical

imaging to improve the contrast with different target tissues. Such fluorophores

are more commonly available and are easier to design in the visible spectrum,

as opposed to x-ray. Thus functional medical imaging is potentially more infor-

mative in the visible spectrum.

1.2 Why Computational Imaging Through Scatter-

ing Is Sensitive to Accurate Modeling and Cali-

bration?

Traditionally, computational imaging through scattering media requires solving an

inverse problem. In most cases, it is relatively easy to formalize a forward model

which is a mapping from scene to measurement. However, the required task is a

mapping from measurement to scene, hence the name “inverse problem”.

The challenge in solving the inverse problem is the assumption that the forward

model is accurate. An inaccurate forward model can be a result of:

∙ Model Mismatch: In that case the forward model does not properly account

for the physics of the problem; therefore it is impossible to explain the raw

measurement by the forward model, for example – assuming a specific physi-

cal model for the scattering, that does not capture the full complexity of the

scattering process.

∙ Calibration: The forward model usually includes many physical constants

that describe the imaging system and physics of the problem (for example,

the camera field-of-view or scattering media thickness). Calibrating a forward
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model usually requires extensive effort to accurately measure all parameters and

properties.

It is important to note that model mismatch and insufficient calibration can hap-

pen simultaneously and to different extents. Calibrating an imaging system also

assumes we have full control of the specific parameters that are measured. This

assumption may be extremely prohibitive in real-world scenarios.

1.3 Imaging through Scattering — Techniques and

Regimes Presented Here

We present techniques that aim to tackle fundamental issues with prior methods to

image through scattering. Fundamentally, our goal is to computationally maximize

the information extracted from the optical signal. This allows our techniques to

operate in a wide range of challenging scattering conditions without calibration. To

that end, we develop different algorithms that are inspired by modern statistical

analysis, optimization, signal processing, compressive sensing, and machine learning.

A common thread among the techniques presented here is ultrafast time-resolved

sensing. By ultrafast we consider a sensor with picosecond time resolution. Since

light propagates 0.299 mm in 1 ps, at picosecond time resolution the speed of light is

non-negligible. Throughout this dissertation, we show that time-resolved sensing is

essential for imaging through scattering.

The scattering regimes considered here can be broadly classified as sparse and

volumetric scattering. In sparse scattering, the number of scattering events photons

undergo is relatively small. This includes the general problem of lensless imaging and

imaging through a sheet of paper. In volumetric scattering, the number of scattering

events photons undergo is very large. This includes tissue phantoms and fog.
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FemtoPixelTraditional Approach FemtoPixelTraditional Approach

Figure 1-2: FemtoPixel – Lensless single pixel imaging with compressive ultrafast
sensing. Two examples with the same acquisition time comparing traditional tech-
niques to FemtoPixel. To achieve similar reconstruction quality to FemtoPixel, the
traditional approach (not time-resolved) requires a 50× longer acquisition time.

Lensless Imaging with a FemtoPixel1

Chapter 3 presents a compressive sensing framework for time-resolved imaging with-

out a lens, an equivalent to a single scattering event. The presented framework pro-

vides design tools for imaging systems. These include analysis tools for the trade-off

between system complexity, imaging quality, and acquisition time. Most importantly,

by leveraging the physics of time-resolved sensing, we develop an optimization frame-

work for the ideal sensors’ position and imaging patterns with compressive sensing.

The suggested approach demonstrates 50× faster acquisition time when compared to

traditional (not time-resolved) single-pixel cameras (see Fig. 1-2).

Data-Driven Calibration Invariant Imaging Through Paper2

One of the biggest challenges in computational imaging is the need to solve an inverse

problem due to the sensitivity to accurate physical modeling and calibration. Chap-

ter 4 presents an alternative to solving an inverse problem by using a data-driven

approach. In this case, a data-driven algorithm is used to solve a computational

imaging problem without calibration. The neural network directly learns a mapping

1Abridged versions of this work appeared as [149] “Lensless Imaging with Compressive Ultrafast
Sensing,” G Satat, M Tancik, and R Raskar, IEEE Transactions on Computational Imaging, 2017.
And, [147] “Compressive Ultrafast Single Pixel Camera,” G Satat, G Musarra, A Lyons, B Heshmat,
R Raskar, and D Faccio, OSA Computational Optical Sensing and Imaging, 2018.

2An abridged version of this work appeared as [148] “Object Classification through Scattering
Media with Deep Learning on Time-Resolved Measurement,” G Satat, M Tancik, O Gupta, B Hesh-
mat, and R Raskar, Optics express, 2017.
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Scene Measurement CNN
Estimated 

Pose

SPAD 

Camera

Figure 1-3: Calibration invariant imaging through scattering. A CNN learns to es-
timate the pose of a mannequin that is occluded by a sheet of paper. Our training
technique results in a CNN that is invariant to variations in the system calibration.
The network was trained before the experiments took place, and the optical system
was built without calibration.

from the measurement to the hidden scene. Thus, there is no need to model the

physics of the problem and then inverting the mathematical model. Furthermore, the

presented technique is based on a neural network training strategy, which results in

a model that is invariant to variations in calibration parameters. We demonstrate

this approach on the problem of classifying the pose of a mannequin hidden behind

a sheet of paper. In lab experiments, the measurement from a time-resolved single

photon avalanche diode (SPAD) camera is fed into a trained convolutional neural net-

work (CNN) which correctly classifies the mannequin poses without any calibration

(Fig. 1-3).

Imaging Through Thick Tissue Phantom3

Chapter 5 introduces “All Photons Imaging” (API) — a computational technique

for imaging through a thick tissue phantom (Fig. 1-4). We introduce a probabilistic

interpretation for the imaging system point spread function (PSF). This simplifies the

PSF estimation from the measurement itself, and avoids the need to solve an ill-posed

blind deconvolution problem. The technique utilizes time-resolved measurements for

imaging through volumetric scattering. By using all of the optical signal, including
3Abridged versions of this work appeared as [145] “All Photons Imaging Through Volumetric

Scattering,” G Satat, B Heshmat, D Raviv, and R Raskar, Nature Scientific Reports, 2016.
And, [144] “All Photons Imaging through Layered Scattering Materials,” G Satat, B Heshmat, and
R Raskar, OSA Computational Optical Sensing and Imaging, 2017.
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𝑡

𝑥

𝑦
Measurement API

Figure 1-4: All photons imaging through 15 mm thick tissue. API leverages time-
resolved measurement to invert the scattering and recover the hidden target.

early arrived (non-scattered) and diffused photons, it achieves better spatial resolution

at greater depths. Compared to conventional early photon measurements for imaging

through a 15 mm tissue phantom, our method shows a 2× improvement in spatial

resolution (4 dB increase in PSNR). Unlike other methods, which aim to lock at a

specific part of the optical signal (coherent, ballistic, acoustically modulated, etc.),

our framework aims to use all of the optical signal. This results in an all optical,

calibration-free imaging system that enables wide field imaging through volumetric

scattering at poor SNR and does not require to raster-scan the scene.

Imaging Through Realistic Fog4

The technique presented in Chapter 5 was limited to optical transmission mode and

to materials that are homogeneous in the 𝑥 − 𝑦 plane (perpendicular to the optical

axis). Thus it is primarily applicable to medical imaging applications. Chapter 6

introduces a technique that alleviates these constraints and allows imaging through

dense, dynamic and heterogeneous fog in optical reflection mode (Fig. 1-5). The

technique is demonstrated in a wide range of realistic fog conditions at up to 30 cm

visibility. The main challenge that arises in optical reflection mode is the need to

separate between the photons that back-reflect from the fog (background) and the

photons that hit the target and are then detected by the camera. This is unlike

optical transmission mode, in which all of the measured photons interact with the

4An abridged version of this work appeared as [151] “Towards Photography Through Realistic
Fog,” G Satat, M Tancik, and R Raskar, IEEE International Conference on Computational Photog-
raphy (ICCP), 2018.
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Figure 1-5: Imaging through realistic fog. With a time-resolved single photon detector
we separate background photons that back-reflect due to the fog from the signal of
the occluded target. We recover the target reflectance and depth in a wide range of
realistic, dense, heterogeneous, and dynamic fog conditions.

target. The solution is based on a probabilistic framework that separates, in real time,

between background and signal photons, without any assumption about the fog. The

extracted signal photons are used to reconstruct the occluded scene reflectance and

depth map.

1.4 Main Contributions

This thesis’s contributions to the computational imaging literature include:

∙ Probabilistic modeling of scattering:

– A probabilistic interpretation of the scattering PSF which extends to both

modeling and estimation. This interpretation demonstrates, for the first

time, probabilistic imaging through thick tissue phantom.

– A probabilistic model and algorithm for imaging through extremely dense,

dynamic, and heterogeneous fog conditions, and recovering both target

reflectance and depth.

∙ Data-driven computational imaging:

– The first data-driven calibration-invariant computational imaging tech-

nique. Demonstrated in imaging through sparse scattering.
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– A method for training deep learning algorithms with synthetic data for

NLOS imaging. Experimentally demonstrated on real data.

∙ Time-resolved and single photon sensing for imaging through scat-

tering:

– The first framework for lensless imaging with compressive ultrafast sensing.

Includes an optimization procedure for computing the optimal sensors’

positions and compressive masks.

Our contributions extend beyond the above algorithms and theoretical frameworks

to the design, implementation, and practical evaluation of imaging through various

scattering media including sheet of paper, thick tissue phantoms, and fog, with streak

and SPAD cameras.
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Chapter 2

Background and Related Works

Imaging through scattering media and occlusions is a long lasting problem. Tradition-

ally it is accomplished in non-visible light modalities such as RF, x-ray, ultrasound,

etc. As mentioned in Chapter 1, the advantages of visible light have energized an

effort towards imaging through scattering media with visible light. In this chapter,

we introduce the basic physics of scattering, including widely accepted models and

notations, and introduce different modalities for imaging through scattering media.

2.1 Light-Matter Interaction

All the advantages of imaging with visible light described in the Introduction are due

to the interaction between light and matter. This interaction can be classified as a

combination of:

∙ Absorption: the photons are absorbed in the material and the energy is con-

verted to heat or photons of lower energy (fluorescence).

∙ Scattering: the photons change their propagation direction as a result of the

interaction, but maintain their energy (wavelength).

The case of imaging through highly absorbing materials (for example imaging through

a wooden wall with visible light) is somewhat hopeless. This is because the sensor

would not capture many, or any, photons. Imaging through scattering media, on the
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Figure 2-1: Absorption and scattering in biological tissue (figure from Vogel and
Venugopalan 2003 [180]). (a) Absorption coefficient and (b) Scattering coefficient
as a function of optical wavelength. The scattering coefficient is normalized by the
absorption coefficient. Note that the x-axis in the plots is different. Scattering is only
characterized in the 400 − 1800 nm regime where absorption is low.

other hand, is hard yet possible. In the case of scattering, the signal is corrupted, but

it is detected by the sensor. This opens the door to computational imaging techniques

to de-scatter the signal and reconstruct the occluded scene.

Imaging in scattering conditions is preferred compared to absorbing media, as

demonstrated in medical imaging. Fig. 2-1 shows the scattering and absorption coef-

ficient as a function of wavelength in human tissue. The dip in absorption at 800 nm

is considered as the “window into the body” (despite the significant scattering in this

regime).

2.2 Scattering and the Effect on Imaging

To evaluate the scattering effect on imaging we use a model inspired by the Plenoptic

function [2]. Consider a photon entering into scattering media at position 𝑟, angle of

propagation 𝜈 and time 𝑡. The photon will emerge at position 𝑟′, angle of propagation

𝜈 ′ and time 𝑡′. Note that if there was no scattering (i.e. the media occupies zero space)

we would have 𝑟 = 𝑟′, 𝜈 = 𝜈 ′, and 𝑡 = 𝑡′. On the other hand, if there is scattering 𝑟′,

𝜈 ′, and 𝑡′ are different.

In this thesis, we broadly model scattering as sparse and volumetric scattering.
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𝑥, 𝜈, 𝑡 → 𝑥, 𝜈′, 𝑡

𝑥, 𝜈, 𝑡 → 𝑥′, 𝜈′, 𝑡′

𝜈′ − 𝜈

a)

b)

Figure 2-2: a) Sparse and b) Volumetric scattering. The red arrow demonstrates an
example of a photon path in these conditions, compared to the dashed line which
demonstrates the path without scattering.

∙ Sparse scattering: The scattering process can be modeled as a single scatter

event. Because scattering is just a change of angle, we get: 𝑟′ = 𝑟, 𝜈 ′ ̸= 𝜈, and

𝑡′ = 𝑡. This model is also applicable to multiple scattering events if they are

adjacent such that they can effectively be modeled as a single event. Sparse

scattering is a good model for a thin scattering layer such as a milky glass or

a sheet of paper. Other related problems include looking around corners and

lensless imaging. Fig. 2-2a demonstrates sparse scattering.

∙ Volumetric scattering: The photons undergo multiple scattering events in

the media. These scattering events are not adjacent, and cannot be modeled as

an effective single event. Here, 𝑟′ ̸= 𝑟, 𝜈 ′ ̸= 𝜈, and 𝑡′ ̸= 𝑡. This is, of course,

a much more challenging situation for imaging since the signal is substantially

more corrupt. Volumetric scattering is a good model for scattering media such

as fog, tissue, and turbid water. Fig. 2-2b demonstrates volumetric scattering.

2.3 Physics of Scattering

First, we introduce basic terminology in scattering theory. Propagation of photons

in scattering media can be considered as a random walk in 3D where the distance a

photon propagates between interaction events with the material is random. At each
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interaction, the photon can be absorbed or scatter at a random angle.

Phase Function

The phase function describes the relationship between the angle of incoming light to

the outgoing light angle. Broadly speaking, it is a function of the wavelength of light

and the geometry of the scattering particle. Below we provide a few examples of such

phase functions:

∙ Mie theory — takes a very general approach that starts with Maxwell’s equa-

tions, and assumes scattering spheres. Does not have a closed form solution.

∙ Rayleigh scattering — an approximation of Mie theory when the scattering

particles size 𝑑 is much smaller than the light wavelength 𝜆. In that case, the

phase function takes the form:

𝑃 (𝜃) =
3

16𝜋

(︀
1 + cos2 𝜃

)︀
(2.1)

Rayleigh scattering has a strong wavelength dependency of ∼ 𝜆−4 which is

commonly known as the reason for blue skies (since shorter wavelengths tend

to scatter more). Note that Rayleigh scattering is symmetric with respect to

forward and backward scattering.

∙ Henyey-Greenstein (HG) — is a commonly used phase function with a single

parameter for anisotropy 𝑔 ∈ [−1, 1]:

𝑃 (𝜃) =
1 − 𝑔2

4𝜋 (1 + 𝑔2 − 2𝑔 cos 𝜃)1.5
(2.2)

Here, positive 𝑔 results in forward scattering and negative 𝑔 results in backward

scattering. 𝑔 = 0 is isotropic scattering (i.e. the photon scatters in all angles

with equal probability). When 𝑔 → 1 there is effectively no scattering since the

photons simply continue to propagate in the same angle. It is common to use

the HG function in Monte Carlo photon tracers.
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Scattering Length Scales

Photons propagate along straight lines between interaction events in the medium.

These interactions are characterized by different length scales defined by:

∙ Scattering mean free path, defined as the average distance between two

consecutive scattering events in the medium. The scattering coefficient 𝜇𝑠 is

defined as the inverse of the scattering mean free path, and has units of 1
length .

∙ Mean absorption path, defined as the average distance a photon travels

before it is absorbed in the medium. The absorption coefficient 𝜇𝑎 is defined as

the inverse of the mean absorption path, and has units of 1
length .

∙ Mean free path (MFP), defined as the distance a photon travels before it

is scattered or absorbed. The MFP is defined by its inverse — the transport

coefficient 𝜇𝑡, such that 𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠. When 𝜇𝑠 >> 𝜇𝑎 we get 𝜇𝑡 ∼ 𝜇𝑠, and the

mean free path is simply the scattering mean free path.

∙ Transport mean free path (TMFP), defined as the distance a photon prop-

agates while it undergoes several scattering events and is still correlated to the

original direction. It is defined by the inverse 𝜇′
𝑠 such that 𝜇′

𝑠 = 𝜇𝑠(1−𝑔), where

𝑔 is the HG anisotropy parameter.

For illustrative purposes we provide some examples for these quantities in fog and

tissue:

∙ Tissue is mostly forward scattering with 𝑔 ∼ 0.85, MFP ∼ 0.1 mm, and mean

absorption path in the range 10 − 100 mm [120, 184].

∙ Fog describes a wide range of conditions; in general the water droplets geometry

determines the phase function. Fog is known to be forward scattering (when

modeled with HG function, 𝑔 = 0.85 is a common selection). The MFP in fog

varies a lot and is a function of the water droplets’ density. For example, in

visibility of 100 m we get MFP ∼ 25 m, and in visibility of 20 m we get MFP ∼

5 m. Similarly to tissue, the absorption in fog is usually negligible [34, 61, 112].
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Optical Thickness

Optical thickness (also known as optical depth) is the ratio between the intensity of

light incoming to the medium and outgoing from the medium:

OT = − log
𝑃out

𝑃in
(2.3)

The optical thickness is related to the MFP with the Beer-Lambert law:

OT = 𝑒−𝜇𝑡𝑤 (2.4)

where 𝑤 is the thickness of the medium. This also shows us an easy way to measure

𝜇𝑡: by taking optical power measurement through different material thicknesses and

fitting a line to their log.

In the context of atmospheric scattering such as fog, the visibility is defined by:

𝑉 =
3.912

𝜇𝑡

(2.5)

The 3.912 factor arises from the visibility definition as a target with a contrast of

0.02.

Thouless Time

Thouless time defines the mean time it takes a photon to propagate from the source

to the detector:

𝜏𝑇 =
3

𝑐

𝑤2

𝜇𝑠
′ (2.6)

where 𝑤 is the distance between source and target, and 𝑐 is the speed of light in the

medium. We note that different formulations result in different prefactors. Here the

assumptions are a non dispersive medium with with refractive index of 1 [116].
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Figure 2-3: Photon transport modes in scattering media.

2.3.1 Photon Transport Modes Through Scattering Media

When a photon propagates through a scattering medium, it can undergo several types

of interactions [18] (see figure 2-3):

∙ Absorption — within the medium.

∙ Specular reflection — from the surface of the medium.

∙ Diffuse reflection — after one or more scattering events within the medium.

∙ Direct transmission — no interaction with the medium (ballistic photons).

∙ Diffuse transmission — transmission through the medium after one or more

scattering events. These photons are usually divided into:

– Snake photons, which undergo a small number of scattering events.

– Diffused photons, which undergo a large number of scattering events.

2.3.2 Radiative Transport Equation

It is common to write a conservation equation to describe the propagation of energy

in scattering media. The equation is written for infinitesimal voxels and ignores
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interaction between the photons (interference). This is known as the Boltzmann

transport equation [18]:

1

𝑐

𝜕𝐿 (𝑟,Ω, 𝑡)

𝜕𝑡
+∇·𝐿 (𝑟,Ω, 𝑡) Ω+𝜇𝑡𝐿 (𝑟,Ω, 𝑡) = 𝜇𝑠

∫︁
4𝜋

𝑓 (Ω,Ω′)𝐿 (𝑟,Ω′, 𝑡) 𝑑Ω′+𝑄 (𝑟,Ω, 𝑡)

(2.7)

where 𝑐 is the speed of light in the medium, 𝐿 (𝑟,Ω, 𝑡) is the radiance at position 𝑟

with direction Ω at time 𝑡, 𝑓 (Ω,Ω′) is the scattering phase function from angle Ω′

into Ω, and 𝑄 (𝑟,Ω, 𝑡) are sources. As in a standard conservation equation, the left

hand side represents outgoing radiance, and the right hand side represents incoming

radiance. Each term in Eq. 2.7 has a physical meaning, which is described below

(from left to right):

1. The time derivative of the radiance, i.e. the net change of radiance in a small

voxel at a given time point.

2. The radiance flux at direction Ω.

3. The absorption in the medium and scattering out to the angle Ω.

4. Scattering from all angles to angle Ω; this is the balance to term no. 3.

5. Sources in the voxel.

The main problem with Eq. 2.7 is its complexity. A common simplification to

the Boltzmann transport equation is the photon diffusion equation, which is a zero

order approximation [38]. The diffusion equation is expressed with the photon fluence

rate Φ(𝑟, 𝑡) such that Φ(𝑟, 𝑡) =
∫︀
𝐿(𝑟,Ω, 𝑡)𝑑Ω. This approximation is valid when the

radiance is almost uniform with respect to the angle parameter and results in:

−∇ ·𝐷∇Φ(𝑟, 𝑡) + 𝑐𝜇𝑎Φ(𝑟, 𝑡) +
𝜕Φ(𝑟, 𝑡)

𝜕𝑡
= 𝜈𝑆(𝑟, 𝑡) (2.8)

where 𝑆(𝑟, 𝑡) =
∫︀
𝑄(𝑟,Ω, 𝑡)𝑑Ω (isotropic source), and 𝐷 = 𝑐/3𝜇′

𝑠 is the diffusion

coefficient [18]. Note that the diffusion coefficient may contain an absorption term [48,

49].
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Assuming infinite, homogeneous, isotropic media without sources and absorption,

the diffusion equation reduces to:

𝜕Φ(𝑟, 𝑡)

𝜕𝑡
= 𝐷∇2Φ(𝑟, 𝑡) (2.9)

with the following solution in 3D:

Φ(𝑟, 𝑡) =
1

(4𝜋𝐷𝑡)3/2
exp

{︃
−‖𝑟‖22

4𝐷𝑡

}︃
(2.10)

See more details in Appendix A.

When the Diffusion Equation Fails

One of the challenges of the diffusion equation is its inability to describe ballistic and

snake photons. It is common to see model mismatch when 𝑤 < 10/𝜇𝑠 [193]. In that

case, the photons arrive earlier than predicted by the diffusion equation.

Several models try to address these challenges, for example by adding a delta term

to the phase function [195] such that:

𝑓 (Ω,Ω′) ∼ 𝛼𝛿 (1 − Ω · Ω′) + (1 − 𝛼) 𝑓 (Ω,Ω′) (2.11)

where 𝛼 is the fraction of ballistic photons.

2.3.3 Photon Transport as a Random Walk

It is also possible to consider photon transport as a random walk. In that case, the step

size (propagation) is a random number sampled from an Exponential distribution with

the mean equal to 𝜇𝑠. When assuming isotropic scattering (similar to the assumption

of diffusion equation), it is possible to derive the distribution density function of

finding a photon at a certain location and time. Appendix A provides the derivation

of such a random walk that results in Brownian motion.

51



Monte Carlo Simulation of Scattering

Closed form solutions to the photon transport equation only exist for simple cases,

such as isotropic media, and are not applicable to the scattering problems considered

here. Thus, it is common to simulate scattering with a Monte Carlo simulation [184].

In that case, photons are traced individually according to the following main steps:

1. Propagation — randomly sample the distance the photon propagates until

the next scattering event (based on 𝜇𝑠).

2. Scatter — randomly sample the scattering angle of the photon (based on the

phase function).

3. Termination conditions — the photon can be absorbed, detected, or termi-

nated by other conditions.

These steps are repeated until one of the termination conditions is met.

In our work, we extensively use Monte Carlo simulation. Since the computation

of such a simulation is very costly, we implemented a GPU-accelerated version of the

simulator, which can be found in [146].

2.4 Imaging through Scattering with Visible Light

Imaging through obstructions is commonly performed in non-visible parts of the elec-

tromagnetic spectrum, such as x-ray, THz [132], mm-wave [7], microwave [29], and

RF [4, 3]. Here we focus on techniques based on visible light. These can be broadly

categorized as pure light and multi-modal techniques. Table 2.1 summarizes the

trade-offs among these techniques and compares them to All Photons Imaging.

Pure visible light techniques:

∙ Wavefront Shaping [177] — These techniques are based on coherent light

and leverage the memory effect. They try to find the wavefront to illuminate

the scene such that it conjugates the scattering. This results in a tight focus at a
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specific location on the other side of the scattering media. The wavefront can be

modulated with a spatial light modulator (SLM) or a digital micromirror device

(DMD). The main advantage of this approach is the theoretical ability to achieve

diffraction-limited imaging through scattering. However, at its simplest form, it

requires access to both sides of the media, which limits its actual applicability.

To overcome that challenge, it is commonly coupled with guidestars (see below).

∙ Diffuse Optical Tomography (DOT) [18] — Here the goal is to recover

the 3D distribution of the scattering and absorption coefficients in the medium.

This is commonly achieved by solving the radiative transfer equation or the

diffusion equation. The measurement hardware is usually composed of many

probes that surround the medium for illumination and detection. Many variants

of DOT have been demonstrated such as time-domain and frequency-domain.

Functional applications such as recovering fluorescence lifetime of markers in

the medium [75] have also been demonstrated.

∙ Optical Coherence Tomography (OCT) [76] — This technique is based

on interference between the signal reflecting from the scene and a reference

beam. Changing the reference beam allows scanning through different depths

and rejecting reflections from other layers. Standard methods are capable of

achieving resolution in the order of micrometers. OCT is commonly used in

retinal imaging and lesion analysis. OCT handles limited scattering situations

and can penetrate a few mm in skin [99].

∙ 2/3 Photon Microscopy [41] — This technique leverages non-linear effects

in the medium. In a medium that supports non-linear optical interactions, two

(or three) photons can combine to a single photon with double (or triple) energy.

Because the effect is so weak it happens primarily in the beam’s focus. Thus,

with a controlled source it is possible to raster scan the source and detect only

the higher energy photons; these photons are guaranteed to arrive from the focal

spot regardless of scattering. This technique is common in microscopy.
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∙ Time Gating — Since ballistic photons do not scatter, they can be used to

recover the absorption coefficient within a medium in transmission mode (this is

the fundamental concept behind x-ray imaging). Because the ballistic photons

are the first to arrive, it is possible to time gate the imaging sensor such that only

ballistic photons are used for imaging. Hardware used for time gating includes

e.g. a streak camera [194] and Kerr gate [194]. The main limitation of time

gating in transmission mode is SNR since only a few photons propagate without

scattering. In optical reflection mode time gating is even more limited. In that

case, beyond poor SNR, the measurement will always include back-reflected

photons (photons that reflect from the scattering media without interacting

with the target) which reduce the contrast.

Multi-modal techniques:

∙ Acousto-Optics (Guidestar) [190] — This is a complementary method to

wavefront shaping. It enables to raster scan the imaging spot of wavefront

shaping in the medium without physical access to the spot location. The most

common technique uses the acousto-optic effect. Since ultrasound effectively

does not scatter in tissue, it can easily form an ultrasound focal spot. Due to

the acousto-optic effect, photons that propagate through the ultrasound focal

spot will slightly shift their optical frequency. These photons can be easily

detected outside the medium. Traditional acousto-optic techniques are limited

to the ultrasound resolution.

∙ Photo-Acoustics [185] — When light is absorbed in tissue, it creates a ther-

mally induced pressure wave which can be detected using ultrasound. Thus, it

can form an image of light absorption in the medium. The resolution of this

technique decreases with depth at a rate of 1/200 and can reach several cm

deep. The main advantage of using photoacoustic methods is the ability to

resolve optical contrast in ultrasound depths (few cm).
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Method Photoacoustic

Wavefront 

Shaping with

Guidestar

Diffuse Optical 

Tomography

Optical Coherence 

Tomography

2/3 Photon 

Microscopy
Time Gating

All Photons 

Imaging

Spatial Resolution 50 𝜇𝑚 0.5 𝜇𝑚 1 𝑐𝑚 10 𝜇𝑚 1 𝜇𝑚 1 𝑐𝑚 5𝑚𝑚

Photon Utilization
Only absorbed 

photons

Only acoustically 

modulated 

(efficiency is ~1%)

Only diffused 

(other photons 

are noise)

Only ballistic

Only through 

second harmonic 

generation

Only ballistic

All photons 

(with additional 

time tagging)

Hardware Complexity High High Medium Low-Medium Medium Medium Medium

Dynamic Scenes No No No No No No Yes

Raster Scan Yes Yes Yes Yes (1 dimension) Yes No No

Remote Sensing No No No Partial No Yes Yes

Field of View Small Small Small Small Small Large Large

Requires Ultrasound Yes Yes No No No No No

Table 2.1: Comparison of different imaging through scattering techniques with visible
light.

2.5 Time-Resolved Sensing

Time-resolved sensing is key to the techniques presented in this dissertation. This

is the ability to resolve an optical signal with picosecond time resolution. Here we

provide a brief introduction to time-resolved sensing. Time-resolved measurement

techniques can be broadly divided to: 1) systems that manipulate the signal and map

the time response to another domain, and then perform “regular” analog to digital

measurement; and, 2) circuit techniques for fast time to digital (TDC) conversion.

2.5.1 Signal Manipulation

The goal of the methods described in this section is to manipulate the target signal

and reduce the burden from the TDC hardware. In some cases, there is no need

for a TDC since the manipulation is mapping the time domain signal to another

domain like spectrum or a spatial axis. Many techniques fall under this category,

such as Sequentially Timed All-Optical Mapping Photography (STAMP) [118], Kerr

gate [183], and Time Expansion [181]. We focus here on streak camera since it is the

sensor used in Chapter 5.
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Figure 2-4: Streak camera operation principle (figure taken from [64]).

Streak Camera

Streak cameras are the fastest optical measurement device, with up to 0.2 ps [64] (not

considering pump-probe approaches). The technique is based on a mapping of the

temporal profile to spatial measurement using a CCD [154]. A streak camera measures

an 𝑥 − 𝑡 slice from the 𝑥 − 𝑦 − 𝑡 data cube. To slice the 𝑦 axis the streak camera

uses a slit on the focal plane. Photons that enter the slit are converted to electrons

with a photo-cathode. A fast oscillating electric field is sweeping the electrons in the

𝑦 direction such that the earlier electrons (photons) are mapped up and the later

electrons (photons) are mapped down. At the edge of the cathode, a microchannel

plate (MCP) is used to amplify the electrons’ signal before they hit a phosphor screen

to convert them back into photons. The photons are finally measured with a CCD.

See Fig. 2-4 for system schematic. Streak camera characteristics:

∙ The streak camera is synchronized with a trigger (usually connected to a pulsed

laser source that is used to illuminate the scene), such that each emitted pulse

triggers a new sweep of the electric field in the cathode.

∙ The streak camera has a shutter with exposure time in the order of ms. Thus,

the camera usually integrates over many laser pulses. The number of integrated

pulses equals the product of the laser repetition rate (can be an order of MHz

or kHz) and the streak camera exposure time. A pulse picker can be used to

measure events from a single pulse; this is essential in case the phenomena is

not repetitive.
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∙ The time resolution is controlled by the speed of the electric field sweep (faster

sweep results in better time resolution).

∙ Since the time profile is mapped to the 𝑦 axis of the CCD, the time window

that can be measured is a result of the selected time resolution and the number

of pixels in the 𝑦 axis of the CCD. For example, in case of 2 ps and 512 pixels

we can measure a time window of 1.024 ns.

Various techniques have been applied to measure the full 𝑥 − 𝑦 − 𝑡 data cube,

including:

∙ Rotating mirrors (periscope) [178, 145]: a set of two mirrors is used in a

periscope-like configuration to scan through the 𝑦 axis (each 𝑦 slice is mea-

sured independently). This is the technique used in Chapter 5.

∙ Lenslet array [69]: a titled lenslet array is placed in front of the main camera

lens and used to multiplex the 𝑦 axis onto the 𝑥 axis. The number of 𝑦 pixels

equals the number of lenslets, and the number of 𝑥 pixels is the ratio between

the number of CCD pixels and the number of lenslets. Thus, this approach

sacrifices spatial 𝑥 resolution for fast acquisition. This method enables a single

shot measurement of non-repetitive phenomena like plasma discharge.

∙ Compressive sensing techniques [51]: compressive sensing is used to multiplex

the full 𝑥− 𝑦 − 𝑡 data cube onto the 𝑥− 𝑡 measurement. To that end, the slit is

opened to the maximum width, and the scene is encoded with spatial pseudo-

random masks. This method also enables real-time operation although there is

a loss of optical signal due to the masks.

The main advantage of the streak camera is time resolution. It is the only device

that is capable of measuring full spatiotemporal profile at low ps time scales. However,

due to the complicated measurement pipeline, it suffers from poor sensitivity.
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2.5.2 Time to Digital Conversion

These are techniques that directly time-tag the signal. Usually, the photons are

converted to an electric current using a photodiode. The electric signal is then time-

tagged with a TDC. Single photon avalanche diode (SPAD) detectors, such as the

one used in Chapters 4, 6, use different variants of such TDC architectures. Here we

provide a brief description of several TDC architectures; for a more extensive review

see [26].

Time to voltage

This architecture first maps time to voltage (using a charge-pump for example), fol-

lowed by traditional ADC quantization and digitization [72]. This approach usually

achieves order of 30 ps time resolution. The main limitation is the non-linear process

of time to voltage — this results in non-uniform quantization of the time profile.

Another challenge is the technology scaling; as the feature size gets smaller the non-

linearity of the charge-pump is worsened.

Flash TDC

The main challenge with directly digitizing a signal with ps resolution is the need

of a ∼ 100 GHz clock. The flash TDC provides an alternative that uses multiple

phase-aligned slower clocks which drive a set of flip-flops. The flip-flops effectively

digitize the time between start and end signals [8]. A delay gate (usually an inverter

or inverters) on the start line controls the propagation of the signal between the flip-

flops. The final digitized time is simply the binary code of the flip-flops. The time

resolution of this approach is defined by the delay of the inverter (usually order of

∼ 20 ps).

Vernier-line

Vernier-line [47] is similar to the flash TDC, but it provides better time resolution by

using dual delay lines (on both start and stop signal). The delay lines are designed

58



such that the stop signal propagates slightly faster compared to the start signal. The

process ends when the end signal reaches the start signal. The digitized time is simply

the time difference between the two paths. This approach amplifies any mismatch

between the lines and requires careful calibration.

Pipeline TDC

Pipeline TDC [26] uses a similar concept to pipeline ADC. First, a coarse TDC digi-

tizes the signal; the residual is then amplified (time-stretched) and digitized by a fine

TDC. The main reason for this split approach is the limited range of time amplifiers.

This approach requires substantial area and power (all the time amplifications are

calculated, but only one is used for the fine digitization). Another disadvantage is

the latency due to the multiple steps.

Successive approximation TDC

The successive approximation TDC [26] recursively evaluates the time delay between

the start and stop signals one bit at a time (essentially this is a binary search). The

start and stop signals loop independently, and the goal of the TDC is to find the

delay between them, such that they arrive at a phase detector (PD) within a least

significant bit (LSB).

Noise shaping TDC

The noise shaping TDC [26] works in a similar way to the noise shaping ADC (like

the sigma-delta digitization approach). In this approach, a gated ring oscillator is

enabled by the time signal, and its status remains the same for the next signal to

digitize. Thus the digitization error is a function of the previous events and assuming

they are independent, results in a white measurement noise instead of a systematic

error.
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2.5.3 Time-Resolved Sensors Used Here

Here we use two types of time-resolved sensing systems:

1. Streak Camera — as described above, this is a line scanning system with a

time resolution of 2 ps. We used a streak camera to image through a 1.5 cm

thick tissue phantom as described in Chapter 5.

2. SPAD Camera — recently, time-resolved sensors have been demonstrated as

part of single-photon counters (SPAD cameras). Such systems are single photon

sensitive, and each detected photon is time-tagged with a time resolution in the

order of a few tens-of-picoseconds. Beyond the time resolution, these sensors

provide access to the statistical nature of light that is also beneficial for the

purpose of overcoming scattering. The key advantage of SPAD detectors is that

they are silicon-based and can be produced with CMOS process. As a result,

they have the potential to scale to commodity sensors. Our SPAD camera is

a 32 × 32 SPAD array. Each pixel is single-photon sensitive with 56 ps time

resolution. We used the SPAD camera to image through a sheet of paper in

Chapter 4, and through fog in Chapter 6.

60



Chapter 3

Lensless Imaging with FemtoPixel

Imaging through scattering media has an interesting analogy to lensless imaging (or

bare sensor imaging). In lensless imaging, the goal is to capture a photo of the

scene without a lens (a bare detector). Before explaining the connections between

lensless imaging and imaging through scattering media, it is worth focusing on the

applications of lensless imaging as it is a fundamental problem in its own.

In the visible part of the spectrum we have good manufacturing capabilities of

lenses and dense array of pixels (these are commonly available in smartphone cam-

eras). In other parts of the spectrum, these capabilities are not as common. For

example, there are no good and low-cost lenses and dense pixel arrays in the UV, IR,

THz, and RF spectra. While some camera systems exist in these spectra, they are

usually very expensive. Eliminating the need for a lens, and relaxing the need for a

dense array of detectors, opens the door for affordable imaging in these challenging

spectra.

This chapter describes FemtoPixel, a framework for lensless imaging with a single

(or few) detectors. The main novelty in the approach is the use of ultrafast detectors

(with picosecond time resolution) for compressive lensless and single-pixel imaging.

Picosecond time resolution allows distinguishing between photons that arrive from

different parts of the scene with mm resolution. Thus, time-resolved detectors pro-

vide more information per measurement when compared to a regular detector, and

allow us to substantially accelerate the acquisition process when compared to vanilla
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single pixel imaging (50× faster in some of the configurations considered here). More-

over, the time-resolved sensor is characterized by a measurement matrix that enables

us to optimize the active illumination patterns and reduce the required number of

masks even further. The first principle analysis of time-resolved sensing presented

in this chapter will serve as a foundation for imaging in more challenging scattering

conditions in the following chapters.

The main technical contributions presented in this chapter include:

1. A computational imaging framework for lensless imaging with a compressive

time-resolved measurement.

2. An analysis of a time-resolved sensor as an imaging pixel.

3. An algorithm for ideal sensor placement in a defined region.

4. An algorithm for optimized illumination patterns.

3.1 Connection Between Imaging Through Scatter-

ing and Lensless Imaging

To better understand the similarities between imaging through scattering media and

lensless imaging, we first consider the function of a lens in an imaging system. Imaging

is defined as the mapping of a scene onto a sensor. The lens in an imaging system is

responsible for a one-to-one mapping of every scene point to points on the detector

(Fig. 3-1a). The last statement is true just for scene points that are in focus, which

is the scenario considered here. Since a scene point can be thought of as a point

source (emitting light in many directions), the lens should map all light rays emitted

from a specific point to a dedicated point on the detector and be invariant to the

rays’ angle. Removing the lens from the imaging system eliminates the one-to-one

mapping between the scene and detector, such that each scene point is mapped to all

detector points (Fig. 3-1b).
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b)  Lensless Imaging
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c)        Imaging Through Scattering
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Figure 3-1: Lensless imaging is equivalent to imaging through scattering. a) A lens
creates a one-to-one mapping of scene points to points on the sensor. The lens is
focusing light from each scene point to the detector and eliminates the angular in-
formation in the mapping. b) In lensless imaging, the one-to-one mapping is gone,
and each scene point is mapped to all detector points. c) When imaging through a
sparse scattering layer, the lens is focused on the scattering layer. This results in a
measurement that is equivalent to lensless imaging.

The connection to imaging through scattering media should now be more appar-

ent. When we image through a sparse scattering material such as thin milky glass,

the camera is focused on the milky glass (since the object is beyond the line of sight).

Thus each detector point is uniquely mapped to a point on the scattering layer. This

can be thought of as a remote sensor that integrates light over all angles (up to the

aperture of the camera) at a particular diffuser position (Fig. 3-1c). That is, it is

equivalent to replacing the scattering layer with a bare sensor.

3.2 Compressive Sensing and Single Pixel Camera

Background

As mentioned before, imaging is traditionally performed with a lens. This is a physics-

centric approach that puts the entire burden of imaging on the hardware, i.e. no

algorithms are required. Thus, this approach is limited by the availability of a high

quality lens, a dense detector array, and other parameters such as the aperture size,

pixel pitch, and number of pixels. Recently, this physics centric approach has been

challenged by computational photography that aimed to produce high quality photos

with lower quality hardware. This has later evolved to computational imaging which

63



includes ideas on forming images based on more general measurements and sensors.

In computational imaging, the measurement process encodes the target during the

measurement. The measurement is transformed to an image in a computational

reconstruction process.

One of the most notable examples of computational imaging is the single pixel

camera [45] that demonstrates the recovery of a photo using a single pixel. It is useful

to note that imaging with a single pixel can simply be done with a projector. In this

case, the projector raster scans the scene, and each illuminated position is measured

with the detector and stored to computationally form the complete image; this is

common in microscopy and THz imaging.

A significant limitation of the raster scan approach is light sensitivity, since only

a single point in the scene is illuminated. This can be alleviated by spatially mul-

tiplexing the illuminated points, for example using a Hadamard basis. In this case,

instead of illuminating a single point on the scene, multiple points are illuminated

based on some basis. If we denote the 𝑗-th pattern as g𝑗 (a vectorized version of the

pattern) and the pixel’s measurement as 𝑚𝑗 we get:

m = Ḡf (3.1)

where f is the vectorized scene, and the columns of Ḡ are the g𝑗 patterns. When Ḡ

is a basis matrix, such as when Hadamard patterns are used, it can easily be inverted

to recover the scene f .

The main constraint of the last approach is that the number of measurements

has to be equal to the number of recovered pixels i.e. Ḡ is a square, full rank

matrix. Compressive sensing [25, 44] alleviates this constraint by allowing Ḡ to be

under-determined. That is, the number of measurements is less than the number of

recovered pixels. This is achieved by introducing priors on the recovered scene. More

specifically, if we know that the hidden scene can be sparsely represented under some

known basis than we can recover the target even when the number of measurements

is much smaller than the number of recovered pixels.
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The main advantage of this compressive approach is the reduction in the total

acquisition time of the system. It is important to note that in the case of a regular

camera, the measurement of the scene pixels is done in parallel by multiple detectors

(in one shot). In case of a single-pixel camera (in all its forms), this measurement is

serialized in the time domain. The differences among the different approaches are in

how this serialization process is performed: simple serialization, simple multiplexing,

or compressive multiplexing.

The field of compressive sensing is very broad; here we briefly review the key

concepts required for completeness of this chapter. Many extensive reviews and books

have been written on compressive sensing, for example [135, 166] which are dedicated

to optical applications.

For our purpose here, the application of compressive sensing is in solving Eq. 3.1

when Ḡ is under-determined. Compressive sensing provides recoverable guarantees

on f when: 1) f can be sparsely represented in some known basis B such that

f = Bx where x is a sparse vector, and 2) Ḡ satisfies the restricted isometry property

(RIP) [24]. The RIP requirement effectively requires that Ḡ is nearly orthonormal

when it operates on sparse vectors. The second requirement also defines the required

number of measurements. It is well known that Hadamard matrices, random matrices

sampled from Bernoulli and Gaussian distributions satisfy the RIP requirement [12].

Indeed, the first single pixel camera demonstration [170] used Bernoulli random ma-

trix as a sensing operator. That is, compressive sensing allows us to solve the following

equation:

x̂ = arg min
𝑥

‖x‖0 such that m = GBx (3.2)

where ‖·‖0 is the ℓ0 “norm”. Compressive sensing goes one important step further and

relaxes the need for the ℓ0 “norm” [44]. It has been shown that the convex ℓ1 version

can replace the ℓ0 “norm” in Eq. 3.2, such that:

x̂ = arg min
x

‖GBx − m‖22 + 𝜆‖x‖1 (3.3)

Here, we wrote the optimization in a form that allows slack for noise and model mis-
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match, as well as a control of the regularization strength (𝜆). For imaging problems,

it is common to assume that the image is sparse in gradient domain (under a total

variation prior [137]), and solve the following optimization problem:

f̂ = arg min
f

‖Gf − m‖22 + 𝜆‖f‖𝑇𝑉 (3.4)

For the purpose of the discussion here, it is important to note that the patterns

used to encode spatial information can be practically realized in two ways:

∙ Passive illumination. In this case, a lens is used to focus light from the scene

onto a digital micromirror array (DMD) or spatial light modulator (SLM). The

encoded light is then captured by the detector. While this approach requires

an imaging lens it can operate with ambient light. This is the common imple-

mentation of a single pixel camera [45].

∙ Encode with active illumination. In this case, a projector is used to project

the patterns onto the scene. The detector can simply be placed to integrate

light reflected from the scene. A lens may be added to improve light collection

efficiency but is not required. An imaging lens may or may not be required

inside the projector. For example, laser projectors do not require an imaging

lens.

From a mathematical point of view, these two options are equivalent. In our work,

we consider the second approach with an active illumination which is more relevant

for time-resolved sensing.

Our goal in this chapter is to consider the case when the detector is ultrafast. In

this case, the detector captures a time-resolved measurement per projected pattern.

This extra information will help reduce the number of required patterns and will

shorten the overall acquisition time.
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3.3 Related Works

Compressive sensing has inspired many novel imaging modalities. Examples include:

ultra-spectral imaging [9], subwavelength imaging [169], wavefront sensing [125], holog-

raphy [20], imaging through scattering media [105], terahertz imaging [187], methane

gas sensing [54], and ultrafast imaging [19, 51].

As discussed earlier, the single pixel camera [45] is one of the most notable appli-

cations of compressive sensing in imaging. It was later extended to general imaging

with masks [11]. Single pixel imaging also extends to multiple sensors. For example,

multiple sensors were used for 3D reconstruction of a scene by using stereo recon-

struction [167]. Multiple sensors were also incorporated with optical filters to create

color images [188].

3.3.1 Compressive Time-Resolved Sensing for Imaging

Time-resolved imaging has been first suggested by Raskar and Davis [129]. Time-

resolved sensing has been mostly used to recover scene geometry. This is known

as LIDAR [157]. LIDAR was demonstrated with a compressive single pixel ap-

proach [87, 33]. Time-resolved sensing has also been suggested to recover scene re-

flectance [88, 189] for lensless imaging, but without the use of structured illumination

and compressive sensing.

Other examples of compressive time-resolved sensing include non-line of sight

imaging, for example imaging around a corner [63] and through scattering [140].

Imaging around corners with sparsity priors was also demonstrated with low-cost

time-of-flight sensors [66]. A review of these and other methods can be found in [143].

Here, we use compressive deconvolution with time-resolved sensing for lensless

imaging to recover target reflectance.
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Figure 3-2: FemtoPixel – Lensless imaging with compressive ultrafast sensing. a) Il-
lumination, a time pulsed source is wavefront modulated (G) and illuminates a target
with reflectance f. b) Measurement, omnidirectional ultrafast sensor (or sensors) mea-
sures the time dependent response of the scene 𝑚(𝑡). H is a physics-based operator
that maps scene pixels onto the time-resolved measurement.

3.3.2 Single Pixel Camera, Ghost Imaging, and Dual Photog-

raphy

Other communities have also discussed the use of indirect measurements for imag-

ing. In the physics community, the concept of using a single pixel (bucket) detector

to perform imaging is known as ghost imaging and was initially thought of as a

quantum phenomenon [124]. It was later realized that computational techniques can

achieve similar results [159]. Ghost imaging was also incorporated with compressive

sensing [83, 82]. In the computational imaging community, this is known as dual

photography [158].

3.4 FemtoPixel Framework

Our goal is to develop a framework for compressive imaging with time-resolved sens-

ing. The system overview is shown in Fig. 3-2. We start by defining the problem

statement.
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A target f ∈ R𝐿 with 𝐿 pixels (we assume a vectorized representation to simplify

the notation) is illuminated by a spatially modulated pulsed plane wave g ∈ R𝐿.

For example, g can be produced by spatially modulating a time pulsed source such

as a pulsed laser projector. The reflected light from the scene is measured by an

omnidirectional ultrafast detector positioned on the sensors plane. The detector’s

time resolution 𝑇 , and the time-resolved measurement is denoted by m ∈ R𝑁 , where

𝑁 is the number of time bins in the measurement. Better time resolution (smaller 𝑇 )

increases 𝑁 . H ∈ R𝑁×𝐿 is the measurement operator defined by the space to time

mapping that is enforced by special relativity (finite speed of light). At the limit of

no time resolution, 𝑁 = 1 (bucket detector), H is just a single row of ones, and the

process is reduced to a regular single-pixel camera.

Under the FemtoPixel framework we consider 𝐾 sensors (𝑖 = 1..𝐾) with 𝑁 time

samples. The scene is illuminated by 𝑀 patterns (𝑗 = 1..𝑀) so the time-resolved

measurement of the 𝑖-th sensor, when the target is illuminated by the 𝑗-th illumination

pattern, is defined by: m𝑖,𝑗 = H𝑖G𝑗f . Where G𝑗 ∈ R𝐿×𝐿 such that G𝑗 = diag {g𝑗} (a

diagonal matrix with the pattern g𝑗 on the diagonal). Concatenating all measurement

vectors results in the total measurement vector m⃗ ∈ R𝑁𝐾𝑀 , such that the total

measurement process is:

m⃗ =

⎡⎢⎢⎢⎣
...

m𝑖,𝑗

...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
...

H𝑖G𝑗

...

⎤⎥⎥⎥⎦ f = Qf (3.5)

where, Q is an 𝑁𝐾𝑀 × 𝐿 matrix which defines the total measurement operator.

Here we invert the system defined in Eq. 3.5 using a compressive sensing approach.

To that end, we analyze and physically modify Q to make the inversion robust. More

specifically, we analyze and optimize the following fundamental components of Q:

∙ Physics-based time-resolved light transport matrix H. H is a mapping

from the spatial coordinates of the scene to the time-resolved measurement

(H : r → 𝑡). In section 3.4.1 we derive a physical model of H and discuss
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its structure and properties. H can be modified by changing the sensor time

resolution and position.

∙ Combination of multiple sensors. Multiple sensors can be placed in the

sensor plane. Each sensor results in a different time-resolved light transport

matrix H𝑖. Section 3.4.2 discusses the considerations of sensor placement and

presents an algorithm for optimized sensor placement in the sensor’s plane.

∙ Illumination (probing) matrix G. This matrix is similar to the sensing

matrix in the single pixel camera. In our analysis, we assume the modulation

is performed on the illumination side. Section 3.4.3 presents an algorithm for

generating optimized illumination patterns for compressive ultrafast imaging.

Broadly speaking, inverting Eq. 3.5 is robust if there is little linear dependence

among the columns of Q (so that it has sufficient numerical rank). This is evaluated

by the mutual coherence [50] which is a measure for the worst similarity of the matrix

columns and is defined by:

𝜇 = max
1≤𝑎,𝑏≤𝐿,𝑎̸=𝑏

⃒⃒
Q𝑎

𝑇Q𝑏

⃒⃒
‖Q𝑎‖2 ‖Q𝑏‖2

(3.6)

From here on, as suggested in [46], we will use an alternative way to target the mutual

coherence which is computationally tractable and defined by:

𝜇 =
1

𝐿

⃦⃦⃦
I𝐿 − Q̃𝑇 Q̃

⃦⃦⃦2
𝐹

(3.7)

where I𝐿 is the identity matrix of size 𝐿, Q̃ is Q with columns normalized to unity,

and ‖·‖𝐹 is the Frobenius norm. This definition also directly targets the RIP [46] and

provides guarantees for using compressive sensing. We use Eq. 3.7 as a quantitative

measure for evaluating and optimizing Q.
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Figure 3-3: Light cone schematic for a planar stationary target. a) Scene geometry,
the target plane and sensor plane are separated by a distance 𝑧 = 𝐷. Three detec-
tors (marked with blue circles and numbered I, II, III) are positioned at different 𝑦
positions in the detector plane. b) The light-like part of the light cone emanating
from the target point marked with a red ‘X’ defines the event measurement times at
the different detectors. Due to the light cone geometry, the light will arrive at the
detectors at different times. First it will be measured by detector I which is closest
to the source, followed by detectors II and III. These times are defined by Eq. 3.8.
Note that the horizontal axis describes in a) the z-axis, and in b) the time-axis.

3.4.1 Time-Resolved Light Transport

Here, we develop a generic light transport model for time-resolved imaging. Informa-

tion propagation is governed by the finite speed of light. This provides geometrical

constraints to an image formation model. Information propagation is conveniently

described in a Minkowski space with the space-time four-vector (r, 𝑡) = (𝑥, 𝑦, 𝑧, 𝑡).

For example, for a point source at position r′ pulsing at time 𝑡′, and a sensor at

position r, the space-time interval between the source (r′, 𝑡′) and the sensor (r, 𝑡) is

defined by:

𝑠2 = ‖r− r′‖22 − 𝑐2(𝑡− 𝑡′)2 (3.8)

where 𝑐 is the speed of light. Enforcing causality and light-like behavior is equivalent

to setting 𝑠2 = 0 which defines the light cone. Fig. 3-3 shows a schematic of the

light cone and demonstrates how the same event is measured in various positions at

different times.

As a result of the light cone geometry, the time-resolved measurement of a sen-
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sor positioned at r and time 𝑡 of an arbitrary three-dimensional time dependent

scene 𝑓(r′, 𝑡′) is the integral over all (r′, 𝑡′) points on the manifold 𝑀 defined by

𝑠2 = ‖r− r′‖22 − 𝑐2(𝑡− 𝑡′)2 = 0:

𝑚 (r, 𝑡) =

∫︁
𝑀

1

‖r− r′‖22
𝑓(r′, 𝑡′)𝑑𝑀 (3.9)

where the 1/‖r− r′‖22 term accounts for the intensity drop-off.

Since the time scales of light transport are in the order of 0.3 mm
ps

we assume that

the scene is stationary compared to these time scales. That is 𝑡′ is fixed and assumed

𝑡′ = 0 without loss of generality. Next, we assume a planar scene at 𝑧′ = 𝐷 and

sensor positioned at 𝑥, 𝑦 and 𝑧 = 0. Due to the circular symmetry of the light cone

we get:

𝑚(𝑥, 𝑦, 𝑡) =

2𝜋∫︁
0

1

𝑐2𝑡2
𝑓 (𝑥 + 𝜌 cos(𝜃′), 𝑦 + 𝜌 sin(𝜃′)) 𝜌𝑑𝜃′ (3.10)

with 𝜌 =
√
𝑐2𝑡2 −𝐷2. The intensity drop-off is written as a function of time since:

‖r− r′‖22 = 𝑐2 (𝑡− 𝑡′)2 = 𝑐2𝑡2.

The sensor’s finite time resolution 𝑇 corresponds to a time sampling of 𝑚(𝑥, 𝑦, 𝑡)

that is denoted by m. A sensor positioned at location r𝑖 = (𝑥𝑖, 𝑦𝑖) will produce a

measurement m𝑖 = H𝑖f , where H𝑖 is defined by the kernel in Eq. 3.10, and f is

a discretized, lexicographically ordered representation of the target reflectance map

𝑓(𝑥, 𝑦). H𝑖 is a mapping from a two-dimensional spatial space to a time measurement,

that is dependent on the detector position and its time resolution. Below we discuss

the properties of this kernel.

One-Dimensional Analysis

It is informative to analyze H in a planar world (𝑦 = 0) with the sensor at the origin

(Fig. 3-4). In that case Eq. 3.10 is simplified to:

𝑚(𝑡) =
1

𝑐2𝑡2

[︁
𝑓
(︁
−
√
𝑐2𝑡2 −𝐷2

)︁
+ 𝑓

(︁√
𝑐2𝑡2 −𝐷2

)︁]︁
(3.11)
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Figure 3-4: Time-resolved light transport in a one-dimensional world. a) Geometry,
the target is a black line with a white patch, at a distance 𝐷 from the time-resolved
sensor. b) The time-resolved measurement produced by the sensor. The signal start
time corresponds to the patch distance, and the time duration to the patch width.
c) The measurement matrix H, generated by Eq. 3.11. Here the distance to the target
is 𝐷 = 1000 cm and the sensor has a time resolution of 𝑇 = 20 ps.

Fig. 3-4c shows an example of H matrix in that case. This simple example demon-

strates the key properties of the time-resolved measurement:

1. It is a nonlinear mapping of space to time.

2. The mapping is not unique (two opposite space points are mapped to the same

time slot).

3. Spatial points that are close to the sensor are undersampled (adjacent pixels

mapped to the same time slot).

4. Spatial points that are far from the sensor are oversampled but the signal is

weaker.

These properties affect imaging parameters as described next:

1. Resolution limit. Due to the undersampling closer to the detector, the mini-

mum recoverable spatial resolution is defined by the closest point to the sensor:

𝑐𝑡1 = 𝐷, and the next time slot: 𝑐(𝑡1 + 𝑇 ) =
√
𝐷2 + ∆𝑥2, which results in:

∆𝑥 = 𝑐𝑇

√︂
1 + 2

𝐷

𝑐𝑇
(3.12)
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Fig. 3-5 shows a few cross sections of Eq. 3.12 for relevant distances 𝐷 and time

resolution 𝑇 . Better time resolution is required for scenes that are farther (in

order to achieve the same recoverable resolution).

2. Signal to noise ratio and dynamic range limitation. The closest scene

point to the sensor defines the measurement gain. In order to avoid satura-

tion that is defined by the intensity 𝐼𝑠𝑎𝑡, we require that 𝐼𝑠𝑎𝑡 > 𝐴𝐷−2, where

𝐴 accounts for all measurement constants. The farthest measurable point

from the sensor (𝑥𝑚𝑎𝑥) should result in a measurement above the noise floor:

𝐼𝑛 < 𝐴 (𝐷2 + 𝑥2
𝑚𝑎𝑥)

−1.

Since the noise is usually amplified by higher gain, 𝐼𝑠𝑎𝑡 is proportional to 𝐼𝑛.

If we choose 𝐼𝑠𝑎𝑡 = 𝐵𝐼𝑛 (for some constant 𝐵 > 1) we get: 𝑥𝑚𝑎𝑥 <
√
𝐵 − 1 𝐷.

This demonstrated that as the scene gets closer, the coverage area gets smaller.

These dynamics are true even if there is a more complicated relationship between

𝐼𝑠𝑎𝑡 and 𝐼𝑛.

The combined effect of these phenomena is demonstrated in Fig. 3-6. In this exam-

ple, we consider a ‘half plane’ (𝑥 > 0), where the target reflectance is 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥).

The detector has a time resolution of 𝑇 = 20 ps, with additive white Gaussian noise

that results in SNR = 35 dB. For this simple demonstration, we use the Moore-

Penrose pseudoinverse to invert the system, such that f̂ = H†m. The inversion

demonstrates that close to the origin (𝑥 < 50 cm) the reconstruction suffers from

an undersampled measurement; this area is not sensitive to the measurement noise,

and looks identical with zero noise. The noise has an obvious effect on the recon-

struction farther from the origin (𝑥 > 700 cm).

Analysis of a planar scene

All the properties discussed in the context of one-dimensional scene extend to the case

of a planar scene. Eq. 3.10 shows that the measurement process integrates over circles

centered around the sensor. Due to the finite time resolution, the circles extend to

rings. The rings are thinner for further points, according to 𝜌𝑛 =
√︁

𝑐2(𝑛𝑇 + 𝑡0)
2 −𝐷2,
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Figure 3-5: Recoverable resolution with time-resolved sensing. a) Plots for various
scene distances 𝐷 as a function of sensor time resolution 𝑇 . b) Plots for various
sensor time resolutions as a function of target distance 𝐷.

where 𝑛 is the time sample number and 𝑡0 = 𝐷/𝑐 is the time of arrival from the closest

point. Fig. 3-7 shows the ring structure for a few cases of time resolution and target

distance.

In this chapter, we consider the case of a planar fronto-parallel scene to the sensor

plane. In that case, Eq. 3.10 provides the structure of the H𝑖 matrix. The kernel H𝑖

maps rings with varying thicknesses from the scene plane to specific time bins in the

measurement. At this point, we understand and have quantitative tools to predict

the effects of changing the sensor’s time resolution and position on the measurement

matrix Q. Naturally, better time resolution will reduce the mutual coherence. An

alternative to improved time resolution is to add more sensors as discussed next.

3.4.2 Sensors Positioning

The use of multiple sensors is a natural extension to the single pixel camera. The

sensors’ position affects the measurement matrix Q and so can be optimized. Here we

derive an algorithm for sensors placement in an array in order to reduce the mutual

coherence of Q. To simplify the array structure, we constrain the sensors to a single

plane 𝑧 = 0 and to an allowed physical area. The algorithm accepts two parameters:

the number of sensors 𝐾 and the allowed physical area 𝒞, and provides the ideal

positions under these constraints.
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Figure 3-6: Effects of averaging and noise on time-resolved sensing. a) 𝑓(𝑥) is a
sinusoid on the positive half plane, at a distance 𝐷 = 1000 cm from a sensor with time
resolution 𝑇 = 20 ps and measurement noise of SNR = 35 dB. b) 𝑓(𝑥) is the result
of inverting the system using the Moore-Penrose pseudoinverse, which demonstrates
the undersampled measurement close to the sensor, and sensitivity to noise further
away from the sensor.

First, we consider the case of 𝐾 = 2. Starting with Eq. 3.10, the goal is to

maximize the difference between 𝑚(𝑥1, 𝑦1, 𝑡) and 𝑚(𝑥2, 𝑦2, 𝑡). This is achieved by

choosing r1 = (𝑥1, 𝑦1), r2 = (𝑥2, 𝑦2) which are furthest apart (to minimize overlap of

the rings as shown in Fig. 3-7).

In case of arbitrary 𝐾, the goal is to select 𝑖 = 1..𝐾 positions r𝑖 within an area

𝒞 such that the distance between the sensors is maximized. This can be achieved by

solving:

{r𝑖}𝑖=1..𝐾 = arg max
{r𝑖∈𝒞}𝑖=1..𝐾

{︃
𝐾∑︁
𝑘=1

min
𝑘 ̸=𝑘′

‖r𝑘 − r𝑘′‖2

}︃
(3.13)

Eq. 3.13 can be solved by a grid search for a small number of sensors. A more

general solution is to relax the problem and follow the equivalent of a Max-Lloyd

quantizer [123]. The steps are as follows:

1. Initialize 𝐾 random positions in the allowed area 𝒞.
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Figure 3-7: Time-resolved sensing maps rings with varying thickness to different time
bins. The color represents time samples indexes (for the first 10 samples). As the
time resolution worsens or the target is further away, the rings become thicker. The
images show various sensor time resolutions 𝑇 and target distances 𝐷 for a subset
area of 100 cm × 100 cm.

2. Repeat until convergence:

∙ Calculate the Voronoi diagram of the point set.

∙ Move each sensor position to the center of its cell.

This positioning algorithm is evaluated in Fig. 3-8 for various system parameters

by assessing the effect of the sensor time resolution, number of sensors and array size

(square of varying area) on the mutual coherence cost objective (Eq. 3.7). Several

key features of the system are observed:

1. Improving time resolution reduces the number of required sensors non-linearly.

2. It is always beneficial to improve the sensors’ time resolution.

3. The sensor area defines a maximum number of useful sensors, beyond which

there is no significant decrease in the mutual coherence (increasing the array

size linearly reduces the mutual coherence for a fixed number of sensors).
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Figure 3-8: Mutual coherence as function of sensor number 𝐾, time resolution 𝑇 , and
array size 𝒞. The target size is 5 m×5 m, composed of 80×80 pixels, and at a distance
of 𝐷 = 10 m from the sensor plane. a) Mutual coherence contours for a varying num-
ber of sensors and their time resolution (for fixed array size 𝒞 = 10 cm × 10 cm). b)
Similar to (a) with varying array size constraint (for fixed time resolution 𝑇 = 20 ps).

4. It is possible to trade off between different aspects of the system’s hardware by

traveling on mutual coherence contours. For example, a decrease in the sensor

time resolution can be balanced by adding more sensors. This can be useful

for realizing an imaging system as sensors with lower time resolution are less

expensive and easier to manufacture.

3.4.3 Ideal Compressive Patterns Optimization

We now make the leap to compressive sensing. Previous sections discussed single

sensor considerations and sensors placement in an array under an assumption of

uniform illumination. This section covers ideal active illumination patterns. We

assume the illumination wavefront is amplitude-modulated; this can be physically

achieved by a digital micromirror device (DMD) or liquid crystal display (LCD).

When considering different illumination patterns, Hadamard patterns and ran-

dom patterns sampled from a Bernoulli distribution are a standard choice. Instead,

we suggest patterns that directly aim to minimize the mutual coherence of the mea-

surement matrix. The mathematical patterns may have negative values, which can

be represented by taking a measurement with an “all on” pattern and subtracting it

from the other measurements (due to the linearity of the system) [11].
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Comparisons

a) b)

Figure 3-9: The value of optimized active illumination patterns. The patterns are
optimized for a 5 m×5 m target composed of 80×80 pixels at a distance of 𝐷 = 10 m
from the sensor plane. The measurement is simulated with 𝐾 = 1 sensors and
𝑇 = 20 ps. a) Examples of several patterns computed for 𝑀 = 50. b) Comparison
of different active illumination methods and their effect on the mutual coherence
for varying 𝑀 . The optimized patterns outperform Hadamard and random patterns
sampled from Gaussian and Bernoulli (in {−1, 1}) distributions.

Our goal is to find a set of 𝑀 illumination patterns that would minimize Eq. 3.7

(given the sensors’ properties). Remember that the illumination patterns in the sys-

tem appear in G𝑗. Since the illumination matrix G𝑗 is performing pixel-wise modu-

lation of the target, it is a diagonal matrix with the pattern values on the diagonal

G𝑗 = diag {g𝑗}, where g𝑗 is a vector containing the 𝑗-th pattern values. Taking a

closer look at Eq. 3.5, we stack all the sensor matrices H𝑖 into H such that:

Q =

⎡⎢⎢⎢⎣
...

H𝑖G𝑗

...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
HG1

...

HG𝑀

⎤⎥⎥⎥⎦ (3.14)

which helps since now each mask appears just once. Based on Eq. 3.7, the ideal

patterns are the solution to:

{g𝑗}𝑗=1..𝑀 = arg min
{g𝑗∈[−1,1]𝐿}

𝑗=1..𝑀

{︂⃦⃦⃦
I𝐿 − Q̃𝑇 Q̃

⃦⃦⃦2
𝐹

}︂
(3.15)
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This can be solved with standard constrained optimization solvers. To simplify the

problem and make it differentiable we replace the domain requirement with a simple

regularizer as follows:

{g𝑗}𝑗=1..𝑀 = arg min
g𝑗=1..𝑀

{︃⃦⃦⃦
I𝐿 − Q̃𝑇 Q̃

⃦⃦⃦2
𝐹

+ 𝜆
𝑀∑︁
𝑗=1

‖g𝑗‖22

}︃
(3.16)

where 𝜆 is chosen such that by the end of the optimization procedure all values are

within [−1, 1]. Appendix B provides the derivation for the cost function and its

gradient that help to efficiently solve Eq. 3.16 with gradient descent.

Fig. 3-9a shows several examples of the patterns computed by solving Eq. 3.15.

Fig. 3-9b demonstrates the value of the optimized patterns compared to Hadamard

and random patterns sampled from Gaussian and Bernoulli (in {−1, 1}) distributions.

For very few illumination patterns (below ten) all patterns are comparable. However,

when more illumination patterns are allowed, the optimized patterns are performing

better by reducing the mutual coherence faster compared to the other approaches.

As predicted, the performances of Hadamard, Gaussian and Bernoulli patterns are

nearly identical. Effectively this means that for a given mutual coherence target,

using the optimized patterns would require fewer patterns (shorter acquisition time)

when compared to random patterns. For example, 100 optimized patterns or 300

traditional patterns would result in comparable performance.

Figure 3-10 shows an analysis of the effect of the number of allowed illumination

patterns, the sensor time resolution, and the number of sensors on the overall mutual

coherence. As predicted by CS theory, increasing the number of patterns has a

strong effect on the mutual coherence. This strong effect enables to easily relax the

demands on the hardware requirements when needed. However, as more patterns are

allowed, there are increasingly more dependencies on the sensors’ parameters. This

demonstrates the synergy between compressive sensing and time-resolved sensing.

In this case, traveling on mutual coherence contours allows one to trade off system

complexity (cost, size, power) with acquisition time (increased when more patterns

are required).
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Figure 3-10: Mutual coherence as function of number of illumination patterns 𝑀 ,
sensor time resolution 𝑇 , and sensor number 𝐾. The target size is 5 m×5 m, composed
of 80 × 80 pixels, and at a distance of 𝐷 = 10 m from the sensor plane. The sensor
area 𝒞 is a square of size 10 cm × 10 cm. a) Mutual coherence contours for a varying
number of illumination patterns and sensors’ time resolution (for a fixed number of
sensors 𝐾 = 1). b) Similar to (a) with a varying number of sensors (for fixed time
resolution 𝑇 = 20 ps).

3.5 Simulation Results

We now demonstrate target reconstruction using the FemtoPixel framework. The

following scenario is considered: the target dimensions are 5 m × 5 m with 80 × 80

pixels (𝐿 = 6400) and it is placed 10 m away from the detector plane. The detector

array is limited to a square area of 𝒞 = 10 cm×10 cm. The detector placement method

used is described in section 3.4.2 and the illumination patterns are computed using

the algorithm suggested in section 3.4.3. The measurement operator is simulated as

described in section 3.4.1 to produce the total measurement vector. White Gaussian

noise is added to the total measurement vector to produce a measurement SNR of

60 dB. The targets simulated here are natural scenes (sparse in the gradient domain).

To invert the measurement model in Eq. 3.5 we use TVAL3 [102] (with TVL2 and a

regularization parameter of 213 for all targets). The reconstruction quality is evaluated

with both Peak Signal to Noise Ratio (PSNR — higher is better, performs pointwise

comparison) and Structural Similarity index (SSIM — ranges in [0, 1], higher is better,

takes into account the spatial structure of the image [186]).

So far, the discussion focused on reducing the mutual coherence of the measure-

ment matrix Q. Fig. 3-11 demonstrates the effect of various system parameters on
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Figure 3-11: System parameters effect on reconstruction quality. Various design
points (different number of sensors 𝐾 and time resolution 𝑇 ) are simulated. The
number of optimized illumination patterns 𝑀 is set as the minimal number of patterns
required to achieve reconstruction quality with SSIM ≥ 0.95 and PSNR ≥ 40 dB. The
target is the cameraman image (see Fig. 3-12 right). a) Demonstrates the trends of
various numbers of detectors 𝐾 as a function of the time resolution 𝑇 . b) Shows the
trends of different detector time resolutions as a function of the number of detectors.

the full reconstruction process. The target used is the cameraman image (Fig. 3-12

right). The goal is to find the minimal number of illumination patterns in order to

produce a reconstruction quality defined by SSIM ≥ 0.95 and PSNR ≥ 40 dB. This is

repeated for various number of detectors with different time resolutions. The trends

demonstrate a linear relationship between the number of illumination patterns and

the detector time resolution needed for the specified reconstruction quality. Another

notable effect is the significant gain in the transition from one to two detectors fol-

lowed by a diminishing return for additional detectors. This gain decreases as the

detector time resolution improves. These trends can be useful to trade off different

design constraints. For example, for the specified reconstruction quality the user can

choose one detector with a time resolution of 20 ps and 80 patterns. The same ac-

quisition time can be maintained with two simpler detectors of 40 ps. Alternatively,

two detectors with 20 ps require only 40 patterns (shorter acquisition time) for equal

reconstruction quality.

We now compare the suggested design framework to a traditional (non-time aware)

single pixel camera. This is simulated with an H matrix with just one row of
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Figure 3-12: FemtoPixel simulation results. a) The target image. b) Result with
a regular single pixel camera with 𝑀 = 50 and 𝑀 = 2500 patterns. c) Results
with compressive ultrafast sensing with 𝑀 = 50 for four design points with time
resolution of 𝑇 = 100 ps and 𝑇 = 20 ps, and 𝐾 = 1 and 𝐾 = 2. All reconstructions
are evaluated with SSIM and PSNR. The results demonstrate the strong dependency
on time resolution. Recovery with 𝐾 = 2 and 𝑇 = 20 ps shows perfect reconstruction
on all targets based on SSIM. All measurements were added with white Gaussian
noise such that the measurement SNR is 60 dB.

ones. The illumination patterns are sampled from a Bernoulli random distribu-

tion in {−1, 1} in a similar way to the original single pixel camera experiments [45].

Fig. 3-12 shows the results for three different targets. Reconstructions with a tradi-

tional single pixel camera are shown in Fig. 3-12b for 𝑀 = 50 and 𝑀 = 2500 pat-

terns. Four different design points of compressive ultrafast imaging are demonstrated

in Fig. 3-12c: {𝐾 = 1, 𝑇 = 100 ps}, {𝐾 = 2, 𝑇 = 100 ps}, {𝐾 = 1, 𝑇 = 20 ps}, and

{𝐾 = 2, 𝑇 = 20 ps}, all with 𝑀 = 50 patterns (such that the acquisition time is

equal). Several results are notable:

∙ Reconstruction with 𝐾 = 2, 𝑇 = 20 ps, and 𝑀 = 50 achieves perfect quality
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based on SSIM for all targets.

∙ Reconstruction with 𝐾 = 1, 𝑇 = 20 ps, and 𝑀 = 50 outperforms the traditional

single pixel camera approach with 50× fewer illumination patterns and demon-

strates the potential gain of the FemtoPixel framework.

∙ A traditional single pixel reconstruction with 𝑀 = 50 patterns (same acquisi-

tion time as the compressive ultrafast imaging design points discussed) fails to

recover the scene information.

∙ There is a significant gain in performance when improving the sensor time res-

olution.

3.6 Experimental Results

In this section, we describe an experimental demonstration of the FemtoPixel frame-

work [147]. For illumination, a femtosecond Ti:Sapphire pulsed source (80 MHz rep-

etition rate, 120 fs pulse duration, 800 nm wavelength) is incident on a Digital Mi-

cromirror Device (DMD, Texas Instruments). The DMD is projecting the desired

compressive patterns (with a resolution of 32× 32) on the target and is controlled by

a computer. The target is imaged with a Becker&Hickl photomultiplier tube (PMT)

detector and sampled with Time-Correlated Single Photon Counter (TCSPC) elec-

tronics with a total impulse response time of 27 ps. A sketch of the experimental

setup is shown in Fig. 3-13a.

The first step in the experiments is the calibration of the measurement matrix H.

This step is accomplished by imaging a white wall with full rank Hadamard patterns

(32 × 32 = 1024 in this case) that are used to recover H. Fig. 3-13b shows the

structure of the measurement operator, with a ring structure that is similar to that

found in Fig. 3-7. To construct the result in Fig. 3-13b we plot the time bin that

corresponds to the maximum value of the time response in each pixel.

Figure 3-14a shows experimental recovery results using compressive ultrafast sens-

ing. The target is a white circle. The figure shows recovery results using the sug-
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DMDTarget

Pulsed laser ps
Space to Time Mapping

Figure 3-13: FemtoPixel experimental setup. a) Optical setup sketch. b) The mea-
sured H operator shows the expected ring structure.

gested approach and compares it to a traditional single pixel camera (without any

time sensitivity) for a different number of compressive masks. The reconstructions are

evaluated with SSIM and PSNR. Fig. 3-14b also presents plots for the complete SSIM

and PSNR trends as the number of used masks is reduced (more compression). We

also evaluate the mutual coherence for the measured operator with a different number

of patterns, and compare the results to a regular single-pixel camera. As predicted

the FemtoPixel framework provides superior mutual coherence for any given number

of masks. The lower mutual coherence is the reason for better reconstruction quality

(higher SSIM) at all levels of compression.

3.7 Discussion and Summary

This chapter presented FemtoPixel, a framework for time-resolved compressive lens-

less imaging. This framework provides the user with design tools for situations in

which lensless imaging is essential. It allows the user to effectively balance available

resources. Furthermore, the FemtoPixel framework can be thought of as bridging

the gap between traditional cameras on one end (pure hardware solution) and reg-

ular single-pixel cameras on the other (minimal hardware). This is demonstrated in

Fig. 3-15. As noted in the figure, this continuum of camera design points provides a

unique trade-off between dependency on software vs. hardware, and its effect on the

acquisition time.
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b) FemtoPixel
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M M M

Figure 3-14: FemtoPixel experimental results. a) Recovery of a circle shape using
FemtoPixel and compared to a regular single pixel camera with 300 and 800 masks.
b) Mutual coherence vs. number of patterns for FemtoPixel framework and a regular
single pixel camera, demonstrating the superior results of FemtoPixel.

3.7.1 Implementation Considerations

Section 3.4.3 analyzed only wavefront amplitude modulation. There are many other

ways to use coded active illumination in order to minimize the mutual coherence. For

example, we assumed the wavefront is just a pulse in time, but we can perform coding

in the time domain as well. This will cause different pixels on the target image to

be illuminated at different times. Physical implementation of such delays is possible

with, for example, tilted illumination and fiber bundles (notice that while phase SLM

induces varying time delays on the wavefront, these time scales are shorter than

current time-resolved sensor resolutions). Analysis of such implementation requires

detailed care with the interplay between the H and G matrices (since G becomes time-

dependent). More specifically, in this case, G is creating a mapping from space to

space-time, and H is a mapping from space-time to time i.e. from the H perspective,

the scene is no longer stationary.

The forward model (Eq. 3.9) assumes the wave nature of light is negligible. This

assumption is valid if: 1) Diffraction is negligible: the scene’s spatial features are

significantly greater compared to the illumination wavelength. 2) Interference is neg-
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Figure 3-15: FemtoPixel provides a manifold of camera design options between tra-
ditional cameras and single pixel cameras.

ligible: the coherence length of the illumination source is significantly smaller com-

pared to the geometrical features. For pulsed lasers, the coherence length is inversely

proportional to the pulse bandwidth; this usually results in sub-cm coherence lengths.

Currently available time-resolved sensors allow a wide range of potential imple-

mentations. For example, streak cameras provide picosecond or even sub-picosecond

time resolution [154]; however, they suffer from poor sensitivity. Alternatively, SPADs

are compatible with standard CMOS technology [134] and allow time tagging with

resolutions on the order of tens of picoseconds. These devices are available as a single

pixel or in pixel arrays. It is interesting to note that adding a time-resolved capa-

bility to a single detector is usually divided into two processes: 1) creating a fast

detector (fast rise and fall times), and 2) time to digital conversion. The second step

(as described in Sec. 2.5.2) is independent of the detector, and can be a completely

separate hardware. This is important for the manufacturing of novel sensors across

the spectrum.

The illumination pattern may be constrained to binary values based on the imple-

mentation (DMD allows only binary values while an SLM and LCD allow grayscale

values). The illumination masks optimization algorithm from Sec. 3.4.3 can be easily

extended to produce binary values if required. For example, the regularizer can be
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replaced such that the cost function is:

{g𝑗}𝑗=1..𝑀 = arg min
g𝑗=1..𝑀

{︃⃦⃦⃦
I𝐿 − Q̃𝑇 Q̃

⃦⃦⃦2
𝐹

+ 𝜆

𝑀∑︁
𝑗=1

‖(g − 1) (g + 1)‖22

}︃
(3.17)

This regularizer tries to produce values that are close to either −1 or 1. The regular-

ization parameter can be adapted to produce masks with values that are arbitrarily

close to these desired values. In our experiments, we did not observe any performance

degradation when generating such binary masks.

3.7.2 Limitations

The main limitations of using our suggested approach are:

∙ We assume a linear imaging model (linear modeling in imaging is common, for

example [45, 11]).

∙ We assume a planar scene (if the plane is not fronto-parallel, the rings are

replaced by ellipses, which only affects the structure of H). Furthermore, we

require a known geometry.

∙ Time-resolved sensing requires an active pulsed illumination source and a time-

resolved sensor. These can be expensive and complicated to set up. However, as

we have demonstrated here, they provide a different set of trade-offs for lensless

imaging, and reduce the overall acquisition time.

3.7.3 Conclusions and Future Work

Our work here considered known geometry and recovered scene reflectance. Notably,

other works assume known reflectance and recover scene geometry with compressive

sensing [87, 33]. These depth recovery works use time-resolved sensors to recover the

depth in a similar way to LIDAR. It would be a natural next step to fuse the two

approaches and iterate between geometry and reflectance recovery to recover both.
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In summary, we demonstrated a novel compressive imaging architecture for using

ultrafast sensors with active illumination for lensless imaging. We discussed analysis

tools for hardware design, as well as algorithms for ideal sensor placement and illumi-

nation patterns, which directly target the RIP for robust inversion with compressive

deconvolution. The presented approach allows lensless imaging with a single pixel

and dramatically better acquisition times compared to previous results. This enables

novel lensless single pixel imaging in challenging environments. The approach and

analysis presented here open new avenues for other areas with potential tight cou-

pling between novel sensors and compressive sensing algorithms. Furthermore, the

time-resolved analysis for this simple blur case provides a foundation for the next

chapters, in which we discuss more challenging scattering conditions.
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Chapter 4

Data-Driven Computational Imaging

Through Occlusions

One of the greatest challenges in inverse problems such as non-line-of-sight (NLOS)

imaging is the need for a highly calibrated forward model. An uncalibrated forward

model results in a model mismatch that poses a significant challenge to producing a

reliable solution to the inverse problem. In fact, model mismatch can be harder to

tackle than poor measurement SNR. Here we present a data-driven approach that

results in an algorithm that is robust to model mismatch and poor calibration.

To demonstrate the advantages of data-driven computational imaging we demon-

strate a calibration-free imaging technique that allows identification and classification

of objects hidden behind a scattering layer (regular printer paper). We use a data-

driven approach instead of tuning a forward model and directly inverting the optical

scattering. With a Monte Carlo rendering model, we synthesize a large dataset that

contains random realizations of all optical parameters. This allows us to use a deep

neural network for classification of objects that are hidden from the camera.

We show that by training the network with data that includes variations in all

model parameters, the network learns a representation that is not only invariant

under traditional transformations like translation, but also invariant to variations

in all the other model parameters. This effectively allows calibration-free imaging

through scattering conditions.
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The main technical contributions presented in this chapter include:

∙ Introducing a data-driven technique for NLOS computational imaging through

scattering.

∙ A data-driven technique for imaging through scattering that is invariant to

perturbations in calibration.

∙ A method to train data-driven techniques for NLOS imaging on synthetic data

that is capable of generalizing to real-world experiments without any transfer

learning or fine-tuning.

∙ A method that allows real-time classification through scattering medium and

beyond the line of sight.

∙ A system capable of human pose identification while preserving user privacy.

4.1 Why Data-Driven Computational Imaging?

Figure 4-1 motivates the problem. In traditional NLOS imaging, the model is physics-

driven. In that case a few target observations are used to build a forward model.

This forward model is calibrated to the specific optical system. The next step in this

offline stage (equivalent to training) is to build an inverse problem algorithm, that is

an algorithm that takes a measurement as an input and produces the hidden scene as

an output. At test time, the measurement is fed into the inverse problem algorithm

to produce the target. The forward model can be used as part of an iterative solver,

that together with the inverse problem tries to find the best target that explains the

measurement. There are four important properties to this approach:

1. Almost all aspects of the problem are engineered, with a few or no “black boxes”.

2. The physical model tends to have very few parameters.

3. The inverse model is built based on the forward model, and tends to be very

sensitive to model mismatch and calibration.
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Figure 4-1: Data-driven vs. physics-driven NLOS imaging. Data-driven model di-
rectly learns the mapping from measurement to target, while a physics-driven ap-
proach requires an intermediate forward model.

An alternative to the physics-driven approach is a data-driven technique. In that

case, many training examples are required. These are used to train a “black box”

algorithm that directly learns the mapping from measurement to target. That is, there

is no intermediate forward model representation, and there is no need to calibrate a

forward model.

In this chapter, we show that a properly trained data-driven model is extremely

robust to model mismatch when compared to a traditional physics based approach.

4.2 Related Works

Imaging through sparse (or thin) scattering layers has been demonstrated with various

techniques as discussed in Chapter 2. For completeness of this chapter, we briefly

provide the related works that are based on ToF. We note that imaging around a

corner and through a thin scattering layer are both cases of sparse scattering and are

very similar from both physics (modeling) and inverse problem perspectives.
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Active ToF methods are commonly used for NLOS imaging [129]. Active NLOS

imaging’s most notable advantage is the large field of view and the ability for re-

mote sensing. Different technologies have been demonstrated as impulse [63, 178] or

phase [66, 67, 80, 79] based systems. Various aspects of imaging have been stud-

ied [17] and demonstrated, for example full scene reconstruction [178, 77], reflectance

recovery [117], pose estimation [130], and tracking [53]. NLOS imaging has been

demonstrated with impulse based systems like streak camera [178] and SPAD [22, 98].

All of these approaches are based on a forward model with many physical parameters

that require calibration. Here we demonstrate a calibration-free approach for imaging

through scattering.

Calibrating system parameters is required in many vision [197] and imaging sys-

tems. Having a calibration-free system relaxes many requirements on system design

and usage scenarios, but it is usually very challenging. Some examples of calibration-

free systems have been demonstrated in specific domains such as augmented real-

ity [95, 192] and gaze tracking [161].

To achieve calibration invariant NLOS imaging we leverage convolutional neu-

ral networks (CNN), which have become the main workhorse in many computer vi-

sion tasks. Their power to perform dimensionality reduction from noisy data [179],

object classification [160], segmentation [30], super resolution [43], classification of

spatiotemporal data in videos [81, 173], and to capture invariants [14] makes them

appealing for this application. The input data to the CNN here is a time-resolved

measurement. Spatiotemporal convolutions have been shown to outperform single

image neural networks [81] and long short-term memory (LSTM) networks [175].

In the context of imaging, neural networks have also been applied successfully in

microscopy [182], compressive imaging [91], ToF [57], medical imaging [1], classifica-

tion with coherent light [5, 138], and synthetic aperture radar domains [126]. CNN

have been shown to increase image registration accuracy by learning more robust

features [127] in SAR applications. Remote sensing with data-driven techniques has

been suggested [31, 73] and demonstrated in dehazing with a CNN [23].

Here, we leverage the empirical observation that neural networks learn invariants.
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Figure 4-2: Calibration-free object classification through scattering. a) The training
phase is an offline process in which synthetic data that includes variations in all
physical parameters is used to train a CNN for classification. b) Once the CNN is
trained the user can simply set up the optical system in the scene (SPAD camera
and pulsed laser), capture measurements (six examples of time-resolved frames are
shown), and classify the hidden object with the CNN without having to precisely
calibrate the system.

The study of the invariants learned by deep neural networks is an active research

topic [6, 14, 21, 58, 109]. In our work, we use synthesized data to train a CNN that

is both invariant to changes in forward model physical parameters and is able to

correctly classify hidden objects behind scattering media.

4.3 Calibration Invariant Target Classification Through

Scattering Layer

The requirement for calibration when performing imaging through scattering is di-

rectly related to the need for a physical model that explains the measurements. Such

physical models simulate light transport from the target to the sensor and depend on

the geometry and other physical parameters of the system. Since inverting scattering

is ill-posed, any mismatch between the physical model and the actual measurement

will degrade performance. As a result, accurate measurement of physical parame-

ters like illumination position, camera orientation, etc. is needed. This prohibits

many inversion-based techniques to scale to real-world applications. The approach

presented here allows calibration-free imaging for classification of objects hidden be-
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hind scattering media or beyond the line of sight of the camera. More specifically, we

demonstrate an active pulsed illumination with a single photon time-resolved sensitive

camera, used to classify handwritten digits and the pose of a mannequin occluded by

a sheet of paper (an example of sparse scattering).

The imaging pipeline is shown in Fig. 4-2. A ToF camera is used to increase

measurement diversity. The hardware used here is a SPAD camera that time tags

each detected photon. The imaging pipeline can be partitioned into two halves:

1. An offline process. A generic forward model is used to synthesize a large dataset

of potential ToF measurements. The calibration parameters in the forward

model are randomly sampled. The synthesized dataset is used to train a deep

neural network. The resulting network is invariant to perturbation in calibration

parameters, effectively allowing calibration-free imaging through scattering.

2. An online phase. During test time, the user can set up the optical system

without calibration, and classify, in real-time, hidden objects occluded by the

scattering layer.

4.3.1 Synthetic Data Generation

The synthetic data is generated with a Monte Carlo (MC) renderer. The imaging

system is based on a 32×32 SPAD camera. Since the camera is single photon sensitive,

an MC rendering system is very efficient as it directly simulates the measurement

process with individual photons. MC is a very generic forward-modeling technique

that can be easily modified to simulate various system geometries like looking around

corners and seeing through scattering medium.

An MC renderer requires many parameters to properly produce a realistic result.

We divide these model parameters into two categories: calibration and target parame-

ters. In calibration parameters, we consider all of the geometry parameters, including

illumination, camera calibration, scattering parameters, time jitter, and noise. The

target parameters are specific to the target and include its position and scale (and of

course the target label or instance). Table 4.1 lists the model parameters.
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Calibration parameters

Laser
- Incident position 𝐿𝑃 ∼ 𝑈(−4, 4) cm

Diffuser
- Scattering profile 𝐷𝐷 ∼ 𝑁(0, 𝜎) , 𝜎 ∼ 𝑈(0.8, 1.2) rad

Camera
- Position 𝐶𝑃 ∼ 𝑈(−1.5, 1.5) cm
- Time resolution 𝐶𝑇𝑅 ∼ 𝑁(0, 𝜎) , 𝜎 ∼ 56 + 𝑈(−5, 5) ps
- Time jitter 𝐶𝑇𝑆 ∼ 𝑈(0, 3 * 56) ps
- Field of view 𝐶𝐹𝑉 ∼ 𝑈(0.1, 0.2) rad
- Homography Normal distributions

Noise
- Dark count 𝑁𝐷𝐶 ∼ 𝑈(3000, 9000) photons

Target parameters

- Position 𝑇𝑃𝑥,𝑦,𝑧 ∼ 𝑈(−4, 4) cm
- Scale 𝑇𝑆 ∼ 𝑈(18, 30) cm

Table 4.1: List of parameters and distributions for calibration and target parameters
used in mannequin dataset.

To achieve calibration invariant imaging, we must introduce significant variation

in calibration parameters as part of the training data. This helps the network learn

a representation that is robust to such variations. Such diversity in the training data

is accomplished by randomly sampling the parameters. Thus for each label in the

training data we have many examples that are a result of rendering different scenes

generated by random model parameters. Table 4.1 provides the specific distributions

from which the parameters are sampled.

Given the samples of calibration and target parameters, the scene is completely

defined and can now be simulated with a MC single photon tracer. The ray tracer is

used to simulate the propagation of individual photons from the illumination source,

through the diffuser, onto the target, back to the diffuser and finally to the camera (see

Algorithm 1). This process takes into account the propagation time of the individual

photons. We note that each photon undergoes a random process generated by the

scattering (once towards the target and again on the way back to the camera), and

by the time jitter noise profile.
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Algorithm 1 MC forward model
1: Initialize scene by randomly sampling:
2: Target: label, instance, position, size
3: Laser: incident position
4: Diffuser: scattering profile
5: Camera: position, time resolution, time jitter, field of view, homography

parameters
6: for All photons do
7: Calculate initial intersection point with diffuser
8: Randomly sample diffuser local scattering profile
9: Randomly sample photon’s angle after diffuser

10: Calculate photon’s intersection point with target
11: if does not hit target then
12: continue to next photon
13: end if
14: Randomly sample angle after reflection from target
15: Calculate photon’s intersection point with diffuser
16: if does not hit diffuser then
17: continue to next photon
18: end if
19: Randomly sample diffuser local scattering profile
20: Randomly sample photon’s angle after diffuser
21: Map photon to camera sensor using homography
22: Randomly sample photon’s arrival time jitter
23: Store photon’s arrival time (with jitter) and location
24: end for
25: Bin recorded photons into discrete time frames.
26: Add dark count noise to measurement

While a sheet of paper is a strongly scattering media with multiple scattering

events, it can be modeled as a single scatter event due to: 1) the propagation time

through the paper (∼10 ps) [27] is much smaller compared to the time resolution of

the SPAD camera. 2) The scene size (target feature size and scene length scales) are

much larger compared to the scatterer thickness, so we can approximate the photon

exit coordinate to be equal to the entrance coordinate.

The scattering paper is assumed to be heterogeneous; that is achieved by randomly

sampling different scattering profiles for different positions on the paper. When a

photon hits the paper, we first randomly sample the scattering profile parameter 𝜎

(here we assume 𝜎 is sampled from a uniform distribution). Given the scattering
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Figure 4-3: Comparison of SPAD measurement and MC model. The targets are two
poses of a mannequin placed behind a sheet of paper. The data shows six frames
(each frame is 32× 32 pixels) of raw SPAD measurements, examples of two synthetic
results generated by the MC model with similar measurement quality, and a synthetic
result with high photon count and no additive noise. Note that differences between
synthetic ex. 1, 2 and the raw measurement are due to the fact that the MC model
was never calibrated to this specific setup. The synthetic images represent different
instances chosen randomly from the dataset. The synthetic example with high photon
count helps to distinguish between measurement (or simulated) noise and the actual
signal as well as to observe the full signal wavefront.

parameter 𝜎 the photon’s outgoing angle is deviated by an angle that is sampled

from a Gaussian distribution 𝑁(0, 𝜎). Thus, every time a photon hits the paper, it

encounters a different scattering profile, which simulates a heterogeneous medium.

SPAD array measurements are only based on thousands of detected photons. Since

there is no need to render the full time-dependent scene irradiance, the computational

burden of photon tracing with MC is low (we simulate 106 photons for each data

point, which takes ∼1 second on a regular desktop computer). Figure 4-3 compares

raw measurements taken with the SPAD camera and instances of the forward model

(chosen randomly from the synthetic dataset).

Each data point in the training dataset corresponds to a specific target label

measured by a system that is defined by random target and calibration parameters:
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∙ The target is defined by a label and an instance (for example, a specific man-

nequin pose); these are simply selected from the dataset. For improved robust-

ness it is preferred to increase diversity in all parameters. This is achieved by

scaling the target with parameters that are sampled from distributions of plau-

sible target size. Finally, the target is placed at a random 3D location behind

the diffuser. The location is sampled from a uniform distribution which defines

the NLOS volume of interest.

∙ The imaging system is defined by a realization of various calibration parameters

that are sampled from random distributions. User input is involved only in

determining the random distributions, which are defined based on approximate

measurements, for example observation of the system geometry by the naked

eye. If a parameter is easy to evaluate (for example, the laser position on the

diffuser), it can be modeled with a Gaussian distribution with the known mean

and small variance. Otherwise, it can be modeled with a uniform distribution.

Varying calibration parameters in the training data allows the CNN to be invariant

to changes in those parameters within the training range (see below).

4.3.2 Model Training

The synthetic random dataset generated with the MC forward model is used to train

a CNN for classification of hidden objects behind a diffuser. CNNs are a natural fit for

this task since: 1) they have been shown to perform well in classification tasks, 2) they

are designed to be invariant to translations, and 3) they learn to be invariant to other

data transformations like scaling, rotation and, as demonstrated here, variations in

the system calibration parameters.

Several neural network architectures were considered. The data structure in our

case is composed of several frames, which is similar to the case of action recognition

and gesture classification from short videos. Works such as [81, 163] indicated that

convolutional architectures produce robust classification in that task. Thus, multiple

convolutional architectures were evaluated including VGG [164], ResNet [65], and sev-
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Figure 4-4: Successful classification of handwritten digits through scattering. The
‘0’ and ‘1’ digits from the MNIST dataset are placed behind a sheet of paper. Raw
SPAD measurements are input into the CNN and correctly classified.

eral custom shallower networks with various combinations of layers. All architectures

performed similarly on the classification task with marginally better performance for

VGG. The VGG topology was selected and modified by extension of convolution fil-

ters into time domain (3D space-time filters). Filters were resized to 3 × 3 × 10 where

the last index denotes the time dimension. The training time on 60,000 data points

is approximately two hours on an Nvidia Titan XP GPU.

4.3.3 Calibration Invariance Analysis

To evaluate our approach, we used the well-known MNIST dataset of handwritten

digits. The goal is to evaluate the CNN’s ability to classify hidden objects while

being invariant to changes in calibration parameters. To that end, 60,000 training

samples (6000 per label) and 10,000 test samples are synthesized with the MC model.

Each data point is a realization of a different set of target and calibration parameters.

The classification result on the test set is an overall classification accuracy of 74%

(compared to a 10% random guess accuracy). These simulations demonstrate the

ability to classify objects hidden behind a scattering layer without calibration.

As a proof of concept lab experiment, we cut two targets from cardboard shaped

like zero and one digits, placed them behind a sheet of paper, and measured the

response with the SPAD camera. The two time-resolved measurements were correctly

classified as zero and one using the above network (Fig. 4-4). The training dataset

generation and network training were performed prior to this data acquisition. This

demonstrates that our method is robust to variations in calibration parameters on
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Figure 4-5: CNN learns to be calibration invariant. The CNN is trained with the com-
plete random training set (based on the MNIST dataset), and evaluated with test sets
in which all model parameters are fixed except for one that is randomly sampled from
distributions with growing variance. Three parameters are demonstrated (other pa-
rameters show similar behavior): a) diffuser scattering profile variance 𝐷𝐷 ∼ 𝑁(0, 𝜎),
𝜎 ∼ 𝑈(1 − 𝛼, 1 + 𝛼)rad; b) camera field of view 𝐶𝐹𝑉 ∼ 𝑈(0.15 − 𝛼, 0.15 + 𝛼)rad; and
c) illumination source position 𝐿𝑃 ∼ 𝑈(−𝛼, 𝛼) cm. The top plots show the classifica-
tion accuracy as a function of the parameter distribution variance in the test set. Red
lines show the ranges used for training. The ‘X’ symbols point to specific locations
sampled for PCA projections in the bottom part of the figure. PCA projections show
a color map where each digit has a different color. Performance is maintained beyond
the training range and starts to slowly degrade further from it, as can be observed
in PCA projection III, where more mixing is apparent at a test range 2.5× larger
compared to the training set.

raw data. Sec. 4.4 provides more challenging experimental results.

In order to evaluate the extent of the network’s ability to handle variations in

calibration parameters, a set of controlled synthetic experiments were performed. We

used the trained network with the MNIST dataset, and tested it with multiple test sets

that were generated for the purpose of this evaluation. In each test set, all calibration

parameters are held fixed (on the mean), except for one parameter that is randomly

sampled from distributions with different variances. Thus, the CNN’s sensitivity to

variations in individual parameters is probed independently. Specifically, for each

calibration parameter to be investigated, multiple test sets are generated, each one
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Figure 4-6: Optical setup. The setup was built after the network was trained and
without calibration. a) Sketch of the optical setup. A pulsed laser incident on a
diffuser (a sheet of paper) and illuminates the hidden mannequin. A SPAD camera
is focused on the diffuser. A black screen is used to block direct reflection from the
incident laser on the diffuser to the camera. b) Photograph of optical setup, the
pulsed laser is hidden behind the black screen.

with a different distribution variance. The variance is scanned starting from zero (i.e.

just the mean) throughout the range that was used for training, and then continues

to grow beyond the training range, up to at least 2.5× of the training range variance.

Figure 4-5 demonstrates results for three calibration parameters (other parameters

demonstrate similar behavior). As can be seen from the test accuracies, performance

is maintained within the variance range used for training, and extended well beyond

that range. This demonstrates the network’s ability to learn a model that is invariant

to changes in the calibration parameters within the training range and nearly invariant

beyond that range. For example, in Fig. 4-5(c) the network was trained with data

that had the illumination position distributed uniformly within 5 cm from the mean.

Yet, the test performance starts to slightly drop only after the illumination position

is found within 10 cm of the mean. Qualitative evaluations of these results are also

presented in the bottom part of Fig. 4-5, with PCA projections of the activations

from the penultimate layer of the CNN; these demonstrate sustained performance

well beyond the training range.

This analysis shows that the network performance is maintained when the cali-

bration parameters deviate from the mean within the training range. Furthermore,

even if the network was trained under an assumption of certain ranges for system
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Figure 4-7: Calibration invariant classification of mannequin occluded by paper.
a) Three examples (rows) demonstrate target pose, raw SPAD measurement (first
six frames), and the successful classification. b) Confusion matrix for classification of
raw test set (10 samples per pose).

parameters, the performance degrades slowly if the actual calibration parameters are

outside the training range. Thus the network learns to generalize and extrapolate

beyond the ranges used for training.

4.4 Experimental Results

The optical setup is shown in Fig. 4-6. A pulsed source (NKT photonics SuperK)

with a repetition rate of 80 MHz and pulse duration of 5 ps is spectrally filtered to a

band of 580 ± 10 nm. The camera is a single photon avalanche diode (SPAD) array

(Photon Force PF32) with 32 × 32 pixels, and a time resolution of 56 ps. The laser

is incident on the diffuser at ∼ 45∘. The camera is focused on the diffuser (a regular

sheet of paper which presents non-uniform scattering properties). A black screen

separates the camera from the incident position of the laser on the diffuser (to prevent

direct reflection from the diffuser to the camera). The optical setup demonstrates a

reflection mode geometry. The first 64 time bins of the SPAD measurement are

used, such that the data structure is of size 32 × 32 × 64 (the large number of frames

guarantees consistency and flexibility of the data structure). Several examples of the

measurement frames are provided in Fig. 4-3.

In this experiment, the occluded target is a flexible mannequin (20 cm head to

toe). We define three different poses for the mannequin using various positions of
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Figure 4-8: Calibration invariant classification among seven poses on synthetic test
dataset. a) t-SNE visualization demonstrates the CNN ability to classify among the
seven poses. b) Confusion matrix for classification on the synthetic test dataset.

hands and legs (Fig. 4-7). CNN training is accomplished by synthesizing 24,000

samples for training and 6000 samples for validation. Translations and perturbations

to the mannequin’s head and limbs are applied to create multiple instances of each

pose. The test set is composed of 30 raw SPAD measurements, 10 per pose. For each

measurement, the mannequin is moved around and the position of the hands, legs, and

head are adjusted. The CNN classifies correctly 23 out of the 30 tests (76.6% overall

accuracy, compared to 33.3% random guess accuracy). Fig. 4-7(a) shows examples

of mannequin poses, SPAD measurements, and classification. Fig. 4-7(b) shows the

confusion matrix of this raw test set.

Here training is performed on one dataset (synthetic) and tested on another

dataset (gathered by lab experiments). In general, it is challenging to train and

test on different datasets and it is common to note performance degradation in such

cases. The degradation in performance can potentially be mitigated with domain

adaptation methods (e.g. [94]). It is important to note that the training set was

generated and the CNN trained prior to the experimental setup construction, which
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further demonstrates the robustness of the proposed method.

To further explore the sensitivity to the number of poses we expanded the train-

ing set to include seven different poses (Fig. 4-8 bottom shows illustrations of the

poses). The poses include a diverse combination of limb positions. For each label

8000 training examples and 2000 test examples were generated (total training set of

56,000 examples and 14,000 test set examples). Figure 4-8(a) shows a two dimensional

student’s t-distributed stochastic neighbor embedding (t-SNE) [107] visualization of

activations from the CNN penultimate layer generated on the test set. This visu-

alization demonstrates that the network correctly separates the classes. Fig. 4-8(b)

shows the confusion matrix for this synthetic test set. The network is able to classify

the seven classes with 91.86% accuracy (compared to 14.29% random accuracy). The

synthetic test accuracy for the network trained only on the three poses (Fig. 4-7)

achieved 96.7% (compared to 33.33% random accuracy). This indicates the ability to

experimentally classify among more poses without a significant decrease in accuracy.

4.5 Evaluation

To evaluate our approach we compare its classification performance to several other

classification techniques. The classification task is based on the three mannequin

poses. We create two datasets for evaluation, each one consists of 24, 000 training

examples and 6, 000 test examples. The clean dataset demonstrates the algorithms’

sensitivity just to variation in calibration parameters (decoupling the sensitivity to

measurement quality). The realistic dataset probes the algorithms’ ability to classify

on the actual lab experiments.

1. Clean dataset : This dataset aims to probe the ability to classify under extreme

variation in calibration parameters in a noiseless measurement case. It is based

on synthetic measurements with calibration parameters varying in ranges that

are twice as large compared to the realistic dataset, and with 108 photons with-

out any additive noise (Fig. 4-3 shows two noiseless examples from this dataset).

In this case, both training and testing datasets are synthetic.
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Training set Clean dataset Realistic dataset

Mean Example 33.3 33.3
KNN 53.0 30.0
SVM 57.1 20.0
Random forest 68.8 30.0
Single layer network 68.2 23.8
Our CNN 84.0 76.6

Table 4.2: The proposed approach outperforms other techniques on clean and realistic
datasets. The CNN outperforms all methods in the clean dataset, and is the only
method that achieves results that are better than random accuracy on the realistic
dataset.

2. Realistic dataset : This is the dataset used for training the network described in

section 4.4. It is based on renderings with 106 photons with an additive noise

to approximate our SPAD measurements (see Fig. 4-3 synthetic examples 1 and

2). In this case the training is performed on the synthetic data and testing is

based on the 30 lab measurements.

The results are summarized in Table 4.2. While some of the traditional algorithms

perform reasonably well on the clean dataset, they fail on the realistic dataset. Our

approach significantly outperforms the traditional algorithms on the clean dataset,

and as demonstrated previously, it performs well on the realistic lab measurements,

while the other methods fail (achieve random accuracy or below).

The different classification approaches that were used for comparison are:

1. Mean example: For each label we take the mean of the training data, such that

we have one representative sample per label. Classification is performed based

on the nearest neighbor (closest sample in the dictionary to the measurement).

This approach fails on both datasets.

2. 𝐾-nearest neighbors : Since this method may be sensitive to dictionary size, it

is first evaluated on the clean dataset. We randomly choose a varying number

of samples from the training set to form different dictionary sizes. We consider

two approaches here: a) nearest neighbor — for each test point the chosen

label is the label of the closest dictionary element. b) 𝐾-nearest neighbors
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Figure 4-9: Performance of the 𝐾-nearest neighbor approach on the clean dataset.
Classification accuracy with varying dictionary size for a) nearest neighbor classifier,
and b) 𝐾-nearest neighbors classifier.

(KNN) — for each test point, the chosen label is the label of the majority of

the 𝐾-nearest neighbors. 𝐾 is chosen for each dictionary size with a validation

set (taken from the training set). These results are presented in Fig. 4-9. To

account for sensitivity to the order of data selection, the experiment is repeated

and averaged over eight instances, and each time the training set is shuffled.

The nearest neighbor approach shows decreased performance with an increase in

data size due to the increased ambiguity between dictionary elements. The 𝐾-

nearest approach is able to overcome this limitation and provides classification

accuracy in the range of 50% on the clean dataset. However, it fails on the

realistic dataset.

3. Support vector machine (SVM): The SVM is evaluated with different kernels,

and achieved the best performance with a linear kernel. After hyper-parameters

optimization, the SVM achieves 57.1% classification accuracy on the clean

dataset and fail on the realistic dataset.

4. Random forest : A random forest is trained with 100 trees. The random forest

achieves 68.2% accuracy on the clean dataset, and fails on the realistic dataset.

5. Single layer network : A neural network composed of one hidden layer. This

network achieves 68.2% accuracy on the clean dataset, and like the previous

methods, it fails on the realistic dataset.
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This analysis presents the key difficulty and the requirement for both calibration

invariance and robustness to noise. While some of the traditional approaches perform

reasonably well on the clean data, they fail on the realistic dataset. Our approach not

only outperforms the other techniques on the clean dataset, but it is also the only one

that achieves results that are better than random accuracy on the realistic dataset.

4.6 Discussion

4.6.1 Limitations

The main limitations of the proposed technique are:

1. While our approach is invariant to variations of calibration parameters within

the training range, it still requires some approximate measurements or knowl-

edge of system parameters and geometry. This limitation is somewhat mitigated

by the fact that the network can operate well beyond its training regime (as

demonstrated in Fig. 4-5).

2. Another limitation is the need to synthesize a dataset and train the CNN on

different types of geometries, which might slow down the process when arriving

at a completely new setting. Faster hardware for data generation and CNN

training can potentially address this in the future.

3. Active acquisition systems like the ones used here may suffer from interference

with ambient illumination. This can be more challenging with single photon

counting sensors. One possible solution is the use of narrow-band spectral filters

to pass only the source’s wavelength. These filters are already used in systems

such as LIDARs.

4.6.2 The Importance of Time Resolution

The measurement system suggested here uses time-resolved measurements with few

spatial pixels (32×32). The importance of temporal resolution for classification when
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Figure 4-10: Time resolution is more important than pixel count for imaging through
scattering. a) Classification accuracy vs. time resolution (for 32x32 pixels). b) Clas-
sification accuracy vs. number of pixels (for a non time-resolved system).

imaging through scattering media is evaluated with the suggested imaging pipeline.

The MC model is used to create training and test sets (based on the MNIST dataset)

with different detector time resolutions. The results are plotted in Fig. 4-10(a), where

we note that the performance degrades slowly until the time resolution nears 400 ps

and then degrades rapidly. In the scenes discussed and analyzed here, the time

between the first and last signal photons spans roughly 500 ps, so any time resolution

better than that provides at least two frames with a signal which allows the network

to learn temporal filters.

As seen from the measurements provided in Fig. 4-3, the spatial features have

very little high-frequency content, and therefore, unsurprisingly, low pixel count is

sufficient for classification. To quantitatively evaluate this, we use the same pipeline

to simulate no time dependency, while varying the pixel count. Fig. 4-10(b) demon-

strates that simply adding more pixels doesn’t improve the classification accuracy.

This analysis is limited to the particular scene considered here and evaluates two

extremes: low pixel count with varying time resolution and no time resolution with

varying spatial resolution. This demonstrates theoretical performance of commer-

cially available hardware variants.

4.6.3 What Does The CNN Learn?

The importance of time-resolved data for classification with CNN can be observed

from the filters the network learns (Fig. 4-11). Inspection of these indicates that the
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Figure 4-11: Examples of spatiotemporal filters learned by the CNN. The network
generates both a) spatial and b) temporal filters for inference.

network performs derivatives in the time domain. Similar spatiotemporal features

have been demonstrated when using CNNs for action recognition in videos [81]. The

temporal features learned by our network combined with the strong dependency of

classification accuracy on the SPAD’s time resolution demonstrates the significance

of time resolution to data-driven imaging through scattering.

4.6.4 Scaling To Real-World Scenes

Several aspects can be taken into account when considering the potential of this

approach to scale into real-world applications:

∙ Hardware: Our hardware is a SPAD camera. Since SPAD cameras are man-

ufactured with scalable semiconductor processes, they can be commoditized.

Other approaches, like phase based ToF systems, are also a possibility (prob-

ably with significantly lower time resolution, which would impact its ability

to classify). This is another demonstration that SPAD cameras are especially

useful for imaging through scattering since:

– they are single-photon sensitive, which is extremely useful in NLOS ge-

ometries where the optical signal is very weak;

– the time resolution of ∼50 ps corresponds to 1.5 cm of spatial resolution,

which is reasonable for room-sized scenes;

– the low spatial resolution is not necessarily a drawback (as discussed above).
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∙ Real-time operation: Since classification requires only a forward pass through

the trained neural network, it can be performed in real-time using specialized

hardware (such as GPUs). The only caveat is the case of a completely new

scene that requires rendering new synthetic dataset and training a CNN. This

requires anticipatory preparation before the real-time operation.

∙ Flexibility: The suggested forward model is based on an MC photon tracer.

The MC model is very flexible and can render a wide range of optical geometries

and materials.

4.7 Conclusions and Future Work

We introduced a data-driven method for object classification through a sparse scat-

tering layer that is effectively invariant to variations in calibration parameters. This

approach leverages the ability of neural networks to learn invariants to perturbations

that are introduced during training. We demonstrated that the network is invariant

to changes in the forward model parameters within the training range (and nearly

invariant beyond that range) for the purposes of classification. An important cor-

nerstone of our approach is its ability to generate synthetic data based on a generic

forward model that is used to train and evaluate the neural network. This data-

driven approach can alleviate lengthy experimental calibrations that are traditionally

required in computational imaging systems.

The future of data-driven computational imaging is very promising. As discussed

at length in the introduction to this chapter, data-driven techniques directly solve the

computational imaging task, instead of the traditional approach which starts with a

forward model that is later inverted. Chapter 7 provides specific examples of future

data-driven computational imaging directions.
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Chapter 5

Imaging Through Tissue

One of the main motivations for imaging through scattering media with near-visible

light is medical imaging. Medical imaging has revolutionized medical diagnosis, as

was recognized by several Nobel prizes (e.g. X-ray - 1901, CT - 1979, and MRI -

2003). Pictorially, it provides physicians with the ability to non-invasively see inside

the body. Notably, these common imaging techniques are not based on visible light.

X-ray, Ultrasound, and MRI were chosen since the energy in this spectra scatters

very little as it interacts with tissue. Thus, it is relatively easy to ignore or reject

scattered energy for imaging purposes. For example, in x-ray imaging, part of the

sensor architecture rejects scattered photons based on their angle of arrival. So the

advantage of non-visible energy is clear. However, as mentioned in the Introduction

(Chapter 1), there are several key motivators for medical imaging with visible light,

below we review these advantages specifically for medical imaging applications:

1. Non-ionizing radiation: some populations (e.g. pregnant women, children, can-

cer patients) cannot be exposed to x-ray radiation. This limits the availability

of this imaging modality to a significant part of the population that actually

requires it the most (e.g. ultrasound is routinely used to examine the fetus

during pregnancy). It would be beneficial to have more non-ionizing imaging

modalities beyond these specific populations as well.

2. Blood oxygenation measurement is a useful marker for tissue activity. Oxy-
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genated and deoxygenated blood have different absorption spectra in the NIR;

this property is the basic mechanism enabling pulse oximeter devices. Other

imaging modalities (X-ray, MRI, Ultrasound) do not allow such measurement.

Currently, pulse oximeter-like devices do not provide spatial information and

only measure bulk or averaged properties. Imaging through tissue would enable

measuring the 3D distribution of oxygenated blood in tissue or brain.

3. Functional imaging: it is common to use fluorescent markers in medical imag-

ing. These markers are engineered to attach to specific types of tissue (like

malignant tumors). Furthermore, the markers are engineered to fluoresce in

different wavelengths. It is common to use such markers and contrast enhance-

ments in CT and MRI tests. This enables creating maps that show geometry

(like regular imaging) overlaid with functional information. Having this ability

in visible light would be very beneficial since it is easier to engineer such markers

to respond in visible light. The main challenge in this case is the scattering of

light which we tackled in [142].

4. Optical contrast: different types of tissue have different optical properties that

make their appearance different in visible light. However, in x-ray there is less

variability, thus it is hard to distinguish among different types of tissues in x-

ray (and similarly in Ultrasound). Imaging with visible light can create maps

of different types of tissues in the body.

5. Resolution: imaging resolution is often limited by the wavelength. The wave-

length of NIR (∼ 800 nm) is much smaller compared to ultrasound wavelengths

(∼ 0.1 mm). This property allows high-resolution imaging with visible light.

Our previous works [139, 141, 142] tackled some specific examples of medical

imaging (skin perfusion measurement, and locating and classifying fluorescent tags

through scattering media), but focused on sparse scattering. This chapter demon-

strates a technique for seeing through thick tissue.

As described in the related works (Chapter 2), many imaging techniques to see

through scattering media perform different types of gating on the non-scattered light.
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This is highly inefficient since the majority of the photons do scatter. In transmission

optical mode, the probability to measure a photon that didn’t interact with the media

drops exponentially with the medium thickness and the inverse transport mean free

path. This is modeled by the Beer-Lambert law (Eq. 2.4). As a result, such gating

techniques must have a long integration time to measure enough un-scattered light.

Thus, they are not applicable to non-stationary targets. In the context of medical

imaging, the integration time is limited by the time dynamics of tissue such as blood

flow speed. Beyond the long integration time, such gating techniques are limited by

the finite size of the gate; as a result, they will always measure some photons that

did scatter, which degrades the measurement.

Our motivation is to eliminate these two limitations. We note that the scattered

light contains substantial information about the target and the scattering medium.

Thus, instead of rejecting the scattered light in the measurement process we propose

to measure it and computationally invert the scattering process. This approach allows

us to improve our measurement SNR since we measure all of the optical signal, and to

avoid the limitations of a finite gate. Because our technique is based on a measurement

of the entire optical signal we call it “All Photons Imaging” (API).

The main technical contribution of this chapter is the introduction of API, a new

technique for imaging through scattering based on the entire optical signal. API has

several key advantages:

∙ It allows imaging through volumetric and highly scattering media (mean free

path ≪ medium thickness). We demonstrate API in imaging through a 1.5 cm

thick tissue phantom, and achieve a spatial resolution of 5.9 mm.

∙ API doesn’t require prior knowledge of the material thickness and its optical

properties – making it calibration free.

∙ API is invariant to variations in the optical properties of the material along the

optical axis. Thus it naturally supports layered structures such as skin tissue.

∙ API is wide-field and non-invasive. It is capable of remotely imaging tissue and

resolving the target occluded on the other side.
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∙ API does not require any form of raster scan. Other imaging modalities with

visible light such as diffuse optical tomography require consecutive measure-

ments through a raster scan of the target.

5.1 Related Works

As discussed in Chapter 2, imaging through scattering media is a widely explored

problem. For completeness, we provide relevant related works to medical applications.

For sparse scattering materials, such as very thin tissue, many pure hardware

solutions have been suggested that are based on coherence [60, 76], time-reversal [191,

177, 115, 86, 74] , time-of-flight [117, 142], and speckle correlations [16, 84]. In

the case of volumetric scattering which is more common in medical imaging, more

sophisticated techniques are required. These commonly leverage a combination of

acoustics and optics (acousto-optics [190] and photo-acoustics [185]), nonlinear effects

(two-photon microscopy [68]), and time gating [183]. These methods utilize a physical

separating parameter to lock onto the small set of ballistic photons that have not

scattered. Unlike these methods, API is an all-optical technique that does not rely

on intrinsic properties of the optical signal (coherence, polarization, etc.). Since API

is calibration-free and wide-field, it is appealing for full organ imaging [121].

One common technique to image through scattering that goes beyond a pure hard-

ware solution is Diffuse Optical Tomography (DOT) [37, 40]. DOT usually assumes

the diffusion model, and aims to computationally invert it [18]. DOT is commonly

performed in time [96] and frequency [36] domain. DOT has been used to image small

animals [93], and the human cortex [196, 90] and breast [35, 32]. DOT has also been

demonstrated along with fluorescence markers [133, 75]. We compare API to DOT

in Table 5.1. DOT performs a sparse sample of the space-time profile, unlike our

demonstration of dense sampling for API. DOT requires some form of raster scan-

ning of the illumination source, unlike API’s flood illumination which allows single

shot measurement. Finally, API does not assume the specifics of the diffusion model,

which allows it to operate in a wide range of conditions and avoid model mismatch.
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API DOT

Measurement and use of 

full-dense spatio-

temporal profile

Yes

No, 

DOT performs a sparse sampling of space.

Some methods use full field cameras (but even

if they perform time resolved measurement, it is

of low time resolution).

Entire scene illuminated 

simultaneously
Yes

No, 

The illumination source is raster scanned or

multiple sources are illuminated sequentially.

Field of view

Variable,

Illumination is flood illumination so it doesn’t

pose a restriction. Measurement is done with

a remote camera, so wider/smaller field of

view is a simple function of camera lens.

Fixed, 

Usually based on rigid systems. Some

methods use a standoff camera but still require

raster scanning (i.e. limited flexibility in

illumination field of view).

Contact with target
No,

Applicable to remote sensing.

Yes,

Usually requires contact.

Requires rigid structure 

around target
No

Yes,

A rigid structure of illumination and sensing

probes.

Potential for model 

mismatch
Limited (model is flexible) High (assumes the diffusion model)

Works with fluorescence 

markers
Potentially (Not demonstrated) Yes

Works with 

heterogeneous materials
Partial (only layered materials) Yes

Recovered Information
Absorption coefficient of the target, Scattering

coefficient of the equivalent uniform material.

Absorption and scattering coefficient of the

medium and target

Table 5.1: Comparison of API and DOT.

5.2 All Photons Imaging Algorithm

A high-level overview of API is presented in Fig. 5-1. A pulsed laser flood illuminated

the target in optical transmission mode. The target is adjacent to the tissue phantom.

The other side of the tissue phantom is imaged by a streak camera. A scanning

mechanism with the streak camera provides the space-time-resolved measurement.

Section 5.3 provides additional experimental setup details.

The space-time measurement of the streak camera is effectively an ultrafast video

(𝑥, 𝑦, 𝑡). The duration of each frame is 2 ps. Different frames capture photons that

traveled different optical paths inside the tissue phantom. The earlier frames show

photons that scattered less, but are very noisy since there is a small number of such

photons. Later frames show photons that traveled longer paths inside the tissue

(scattered more), but are not noisy since there are many scattered photons. Another

perspective is that the earlier frames encode more information about the target while

the later frames encode more information about the tissue phantom.
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Figure 5-1: All Photons Imaging through tissue. a) Optical setup. A pulsed laser
is scattered by a diffuser sheet (D) to flood illuminate the target mask. The mask
is adjacent to the 1.5 cm tissue phantom which is imaged with a streak camera.
b) Schematic of the scattering process inside the tissue phantom. c) The optical
setup captures the time-resolved measurement. Each frame corresponds to a different
arrival time of the distorted signal from the mask. Using API the mask is recovered.

Since API is designed to be calibration-free (doesn’t assume prior knowledge of

the tissue phantom), it is effectively a blind deconvolution problem where our goal is

to recover both the scattering and target from the measurement. API avoids the need

to solve this blind deconvolution problem by recovering the blur (convolution) kernel

from the measurement without any assumptions about the target. This is possible due

to the time-resolved measurement. We note that the target is not a time-dependent

object (at least not with picosecond time scales). The rich time dynamics that are

noticeable in Fig. 5-1c are purely due to the scattering. Thus the scattering is both

blurring the target, and also increasing the measurement dimensionality (introducing

more information). This provides yet another perspective of our measurement process,

where each frame is a measurement of the target corrupted by a different blur kernel.

The different blur kernels along the different frames are related to one another by the

physics of the scattering process.
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5.2.1 Forward Model

We denote the unknown target as 𝑠(𝑥, 𝑦) and the measurement as 𝑚(𝑥, 𝑦, 𝑡). These

are related to each other with a convolution kernel 𝐾(𝑥, 𝑦, 𝑡) such that:

𝑚(𝑥, 𝑦, 𝑡) = 𝐾(𝑥, 𝑦, 𝑡) * 𝑠(𝑥, 𝑦) (5.1)

where * is the convolution operator performed on the 𝑥, 𝑦 coordinates. Note that it is

clear from Eq. 5.1 that 𝐾(𝑥, 𝑦, 𝑡) is performing a mapping from space to space-time.

This is similar to the space-time mapping performed by the H operator in Chapter 3.

Equation 5.1 presents our blind deconvolution problem where both 𝐾(𝑥, 𝑦, 𝑡) and

𝑠(𝑥, 𝑦) are unknown.

5.2.2 Signal Independent Scattering Kernel Recovery

Here we describe our solution to recover 𝐾(𝑥, 𝑦, 𝑡) from 𝑚(𝑥, 𝑦, 𝑡) without any as-

sumption of 𝑠(𝑥, 𝑦). Thus it allows us to avoid the blind deconvolution problem.

First, we note that we can consider 𝐾(𝑥, 𝑦, 𝑡) from a probabilistic perspective.

Consider a point source that sends a single photon. 𝐾(𝑥, 𝑦, 𝑡) can be thought of

as the probability density function to measure that photon at (𝑥, 𝑦, 𝑡). With this

observation we can rewrite 𝐾(𝑥, 𝑦, 𝑡) with the Bayes rule:

𝐾(𝑥, 𝑦, 𝑡) = 𝑓𝑇 (𝑡)𝑊 (𝑥, 𝑦|𝑡) (5.2)

Here, 𝑓𝑇 (𝑡) is the probability density function to measure the photon at time 𝑡, and

given that time 𝑊 (𝑥, 𝑦|𝑡) is the probability density function to measure the photon at

location (𝑥, 𝑦). It is important to note that effectively we didn’t make any assumptions

in the transition to Eq. 5.2.

Equation 5.2 is very powerful since it reduces the search space over 𝐾(𝑥, 𝑦, 𝑡).

More specifically, since 𝑓𝑇 (𝑡) is not a function of space it is clearly independent of

𝑠(𝑥, 𝑦) and should be easy to estimate. Eq. 5.2 helps us to interpret the measurement

process. 𝑓𝑇 (𝑡) defines the overall probability to measure photons at different times,
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Figure 5-2: All Photons Imaging model estimation. Demonstrated on a point source
example. a) Raw measurement. b) Recovery of time-only function 𝑓𝑇 (𝑡). c) The
normalized measurement 𝑚̃(𝑥, 𝑦, 𝑡). d) Recovered 𝑊 (𝑥, 𝑦|𝑡) after estimating its pa-
rameters. e) The final estimated kernel 𝐾(𝑥, 𝑦, 𝑡) after multiplying the estimated
𝑓𝑇 (𝑡) and 𝑊 (𝑥, 𝑦|𝑡). f) Recovery of the point source - the result of the deconvolution
procedure. Panels a,c,d,e show cross sections of the 𝑥− 𝑦 − 𝑡 functions for 𝑦 = 0.

for example it shows low probability to measure photons at an early time (ballistic

photons), and higher probability to measure photons at later times (scattered pho-

tons). Furthermore, 𝑊 (𝑥, 𝑦|𝑡) is exactly our earlier interpretation where each frame

is a result of the target distorted by a different blur kernel.

We note that since 𝑓𝑇 (𝑡) and 𝑊 (𝑥, 𝑦|𝑡) are probability functions, they should

be normalized to 1. Thus it is likely that 𝑊 (𝑥, 𝑦|𝑡) will have a time-dependent

normalization coefficient. For simplicity in our recovery, we absorb this coefficient

into 𝑓𝑇 (𝑡), and estimate an un-normalized version of 𝑊 (𝑥, 𝑦|𝑡). Since we only care

about recovering 𝐾(𝑥, 𝑦, 𝑡) this has no effect on the overall recovery process.

The next two sections describe how we estimate 𝑓𝑇 (𝑡) and 𝑊 (𝑥, 𝑦|𝑡) from the

measurement. We experimentally demonstrate this estimation step-by-step in Fig. 5-

2 with an example of a 4 mm point source at the center of the mask plane. It is

important to mention that we only use a point source for illustrative purposes; our

results of recovering more complicated targets use exactly the same reconstruction

procedure. Fig. 5-2 shows cross sections of the measurement and estimated functions

for 𝑦 = 0 i.e. 𝑚(𝑥, 𝑦 = 0, 𝑡). The time coordinate is presented on the vertical axis.
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Estimating the time-only function 𝑓𝑇 (𝑡)

Plugging Eq. 5.2 into Eq. 5.1 we get:

𝑚(𝑥, 𝑦, 𝑡) = 𝑓𝑇 (𝑡) [𝑊 (𝑥, 𝑦|𝑡) * 𝑠 (𝑥, 𝑦)] (5.3)

Since 𝑓𝑇 (𝑡) is independent of space coordinates, we can simply sum over the 𝑥 − 𝑦

coordinates and get 𝑓𝑇 (𝑡) up to a scalar. We found that searching for the coordi-

nate (𝑥0, 𝑦0) in 𝑚(𝑥, 𝑦, 𝑡) with the strongest signal performs better. Thus we set:

𝑓𝑇 (𝑡) = 𝑚(𝑥0, 𝑦0, 𝑡). Fig. 5-2b shows the estimated 𝑓𝑇 (𝑡) in the considered point

source example. We note that the curve captures information about all photon trans-

mission modes (ballistic, snake, diffuse, etc.) without any enforced physical model.

Fig. 5-2b demonstrates the low probability to measure ballistic photons (early time

bins), high probability to measure scattered photons, and diminished probability to

measure very late photons due to the finite optical signal.

Because 𝑓𝑇 (𝑡) does not carry any spatial information, it does not help us in the

reconstruction process. Thus, we normalize the measurement by it before proceeding

to the next step:

𝑚̃(𝑥, 𝑦, 𝑡) =
1

𝑓𝑇 (𝑡)
𝑚(𝑥, 𝑦, 𝑡) (5.4)

Fig. 5-2c shows the normalized measurement.

Estimating the time-dependent scattering kernel 𝑊 (𝑥, 𝑦|𝑡)

To model 𝑊 (𝑥, 𝑦|𝑡) we use a probabilistic interpretation again and use the central

limit theorem. Since a photon performs a random walk (or Brownian motion) inside

the tissue, its final measurement (𝑥, 𝑦, 𝑡) is a result of the sum of many scattering

events. The central limit theorem then predicts that the final measurement would be

distributed with a Normal distribution. In this case, it results in a Normal distribution

with a time-dependent variance:

𝑊 (𝑥, 𝑦|𝑡) = exp

{︂
−𝑥2 + 𝑦2

𝜎2(𝑡)

}︂
(5.5)
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To estimate 𝜎2(𝑡) we note the following connection between different frames. Com-

bining Eqs. 5.3, 5.4 and selecting a specific frame at time 𝑡𝑖 we get:

𝑚̃(𝑥, 𝑦, 𝑡𝑖) = exp

{︂
−𝑥2 + 𝑦2

𝜎2(𝑡𝑖)

}︂
* 𝑠 (𝑥, 𝑦) (5.6)

Taking the Fourier transform with respect to the spatial coordinates results in:

ℱ {𝑚̃(𝑥, 𝑦, 𝑡𝑖)} = 𝛽𝑖 exp
{︀
−𝜎2(𝑡𝑖)

(︀
𝜔2
𝑥 + 𝜔2

𝑦

)︀}︀
ℱ {𝑠(𝑥, 𝑦)} (5.7)

where ℱ is the Fourier transform along the 𝑥, 𝑦 coordinates, and 𝛽𝑖 captures the

transform coefficients. Now considering two specific times 𝑡2 and 𝑡1 we get:

ℱ {𝑚̃(𝑥, 𝑦, 𝑡2)} = 𝛽2 exp
{︀
−𝜎2(𝑡2)

(︀
𝜔2
𝑥 + 𝜔2

𝑦

)︀}︀
ℱ {𝑠(𝑥, 𝑦)}

=
𝛽2

𝛽1

exp
{︀
−
(︀
𝜎2(𝑡2) − 𝜎2(𝑡1)

)︀ (︀
𝜔2
𝑥 + 𝜔2

𝑦

)︀}︀
ℱ {𝑚̃(𝑥, 𝑦, 𝑡1)}

(5.8)

Taking the inverse Fourier transform results in:

𝑚̃(𝑥, 𝑦, 𝑡2) = 𝛽 exp

{︂
− 𝑥2 + 𝑦2

𝜎2(𝑡2) − 𝜎2(𝑡1)

}︂
* 𝑚̃(𝑥, 𝑦, 𝑡1) (5.9)

where 𝛽 is a normalization coefficient. Thus, up to a normalization factor, we have

a simple transformation between selected time frames. To estimate 𝜎2(𝑡), we expand

it with a Taylor expansion: 𝜎2(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + · · ·. To estimate the different

coefficients we note the following relationship between specific time bins:

𝑚̃ (𝑥, 𝑦, 𝑡2) = 𝛽

[︂
exp

{︂
− 𝑥2 + 𝑦2

𝑎1(𝑡2 − 𝑡1) + 𝑎2(𝑡2 − 𝑡1)
2 + · · ·

}︂]︂
* 𝑚̃ (𝑥, 𝑦, 𝑡1) (5.10)

Since we have many time frames (512 in our case), we can derive 511! different equa-

tions to estimate the unknown coefficients in Eq. 5.10. In practice we find that a

linear model is sufficient such that:

𝑊 (𝑥, 𝑦|𝑡) = exp

{︂
− 𝑥2 + 𝑦2

𝑎0 + 𝑎1𝑡

}︂
(5.11)
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We estimate 𝑎1 using a simple line search with a sample of the potential 511! equations.

Lastly, to estimate 𝑎0 we note that rewriting the variance as: 𝑎1 (𝑎0/𝑎1 + 𝑡) reveals

the interpretation of 𝑡0 = −𝑎0/𝑎1. More specifically, 𝑡0 is the ballistic time that can

be estimated according to the first time bin where 𝑚̃(𝑥, 𝑦, 𝑡) is above the noise floor.

Note in Fig. 5-2c that the very bottom (origin of time axis) is very noisy until it

abruptly cleans up. We choose this time as 𝑡0, and set 𝑎0 = −𝑡0𝑎1. This results in

the estimated 𝑊 (𝑥, 𝑦|𝑡) as can be seen in Fig. 5-2d. Note that Eq. 5.11 resembles

the diffusion equation, and if we choose 𝑎1 = 4𝐷 we get:

𝑊 (𝑥, 𝑦|𝑡) = exp

{︂
− 𝑥2 + 𝑦2

4𝐷(𝑡− 𝑡0)

}︂
(5.12)

where 𝐷 is the diffusion coefficient.

Finally to complete the estimation of 𝐾(𝑥, 𝑦, 𝑡) we multiply the estimated 𝑓𝑇 (𝑡) by

the estimated 𝑊 (𝑥, 𝑦|𝑡). The result in shown in Fig. 5-2e. Note that the estimated

kernel 𝐾(𝑥, 𝑦, 𝑡) in Fig. 5-2e resembles the measured point source in Fig. 5-2a, which

shows that our model captures the key physical aspects of the system.

5.2.3 Inverse Problem Formulation

With the estimated kernel 𝐾(𝑥, 𝑦, 𝑡) solving Eq. 5.1 is reduced to a much simpler

deconvolution problem. This problem can be cast as the following optimization prob-

lem:

𝑠 = arg min
𝑠

{︀
‖A𝑠− 𝑚̃‖22 + 𝜆𝑅 (𝑠)

}︀
(5.13)

Here, A is a matrix form of the kernel 𝑊 (𝑥, 𝑦|𝑡). Each column in A is the vectorized

predicted measurement of a specific point source location. The predicted measure-

ments are calculated by computing 𝑊 (𝑥, 𝑦|𝑡) * 𝑠𝑖,𝑗(𝑥, 𝑦) where 𝑠𝑖,𝑗(𝑥, 𝑦) is a point

source target at position (𝑖, 𝑗). These computed vectors are lexicography ordered

and stacked in A. Since A is a blurring operator in space and time it is not invert-

ible. Thus, we regularize the problem with 𝑅(𝑠) that is defined by prior statistical

knowledge of the occluded scene. 𝜆 is the regularization strength.
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In our experiments, our targets were composed of simple lines, thus we used the

ℓ1 norm: 𝑅(𝑠) = ‖𝑠‖1 =
∑︀

𝑖 |𝑠𝑖|. To solve Eq. 5.13 we used FISTA [13], which was

initialized by the noisy ballistic photon estimate 𝑚̃(𝑥, 𝑦, 𝑡0).

5.2.4 Algorithm Implementation Details

The measurement 𝑚(𝑥, 𝑦, 𝑡) is of size 305 × 305 × 512 where each entry corresponds

to 0.3 mm × 0.3 mm × 2 ps. The recovered scenes have a resolution of 70 × 70 pixels,

where each pixel corresponds to 1 mm. We run FISTA with 104 iterations, and the

regularization parameter is set to 𝜆 = 0.004 for all scenes.

Computational Issues

The specified resolutions above result in the size of A equal to 47,628,800×4900 (over

1011 elements) which is too large to save in memory. To overcome this challenge we

note that the FISTA algorithm (similar to other first order methods) requires only

A𝑇A and A𝑇 𝑚̃. A𝑇A has a modest size of 4900 × 4900 and A𝑇 𝑚̃ is a vector of

length 4900. These objects are calculated before FISTA starts.

To calculate A𝑇A without explicitly storing A in memory, we recall that each

column in A is the vectorized 𝑊 (𝑥 − 𝑥𝑖, 𝑦 − 𝑦𝑖|𝑡), which we denote by 𝑣𝑖. Next we

use the fact that A𝑇A =
∑︀

𝑛

(︀
𝐴𝑛

)︀𝑇 (︀
𝐴𝑛

)︀
. Here

(︀
𝐴𝑛

)︀
are parts of the full matrix A.

More specifically, we split A to smaller blocks, compute the Gram matrix of each

block, and sum-up the results. Each of the blocks has all columns, and a user defined

number of rows. The choice of the number of sub blocks is defined by the available

memory.

To compute A𝑇 𝑚̃, we note that each element in the resulting vector is the dot

product between 𝑣𝑖 and 𝑚̃. Thus, we sequentially generate the 𝑣𝑖-s, and compute the

dot product, then store the result in the vector to be used by FISTA.
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Figure 5-3: Recovery of 1D slits target with API. Three slits separated by 1.5, 1.0
and 0.5 cm (a, b, c respectively) and their recovery with Time Averaging and Ballistic
photons compared to API. Blue shadings are the slits’ location ground truth. API
shows significant advantages in recovering the three slits when they are separated by
up to 0.5cm, while the other methods fail in all cases.

5.3 Experimental Results

API is experimentally evaluated with a set of 1D and 2D targets. We compare API

to:

∙ Time averaging: integrates over the time axis and does not leverage temporal

information.

∙ Ballistic: selects the first time bin with signal above the noise floor.

As a 1D target we use a set of three targets composed of slits. The slits are

separated by 1.5 cm, 1.0 cm, and 0.5 cm. The results are shown in Fig. 5-3. As

predicted, the time averaged result is very blurry and does not reveal the locations

of the slits. The ballistic photon measurement is very noisy and the exact location

of the slits is embedded in the noise. On the other hand, API clearly recovers the

exact locations of the slits for the case of 1.5 cm and 1.0 cm separation. As we show

next, our system’s resolution limit is 0.59 cm which explains the failure of API in the

0.5 cm case.

To demonstrate the recovery of 2D targets with API, we place masks shaped
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PSNR: 10.30𝑑𝐵,    SSim: 0.19

PSNR: 19.20𝑑𝐵,    SSim: 0.78PSNR: 14.30𝑑𝐵,    SSim: 0.27PSNR: 10.14𝑑𝐵,    SSim: 0.19

PSNR: 18.64𝑑𝐵,    SSim: 0.79PSNR: 14.74𝑑𝐵,    SSim: 0.17

a b c d
Mask Time Averaged Ballistic All Photons

e f g h

24.25 𝑚𝑚 13.25 𝑚𝑚 5.95 𝑚𝑚

Figure 5-4: API recovers 2D scenes. a) ‘A’ shaped hidden mask. b) Recovered scene
without using time-resolved data; the result is very blurry. c) Recovered scene us-
ing only ballistic photons; the signal is embedded in the noise level. d) Recovered
scene using API; the result clearly recovers the hidden scene. e-h) Mask and re-
sults for a wedge-shaped scene. Blue arrows mark the points used to evaluate the
best recoverable resolution and the corresponding resolution. All reconstructions are
quantitatively evaluated with both PSNR and SSIM (ranges in [0, 1], higher is better).
Scale bar equals 5 mm.

like the letter ‘A’ and a wedge (Fig. 5-4). These results demonstrate again that the

Time Averaging result is blurry and the information content of the scene is gone.

Furthermore, the Ballistic photon measurement captures some of the information,

but the signal is comparable to the measurement noise. API, on the other hand, is

clearly able to capture the information content of the scene. It is interesting to note

that while Ballistic photons use a single time gate of 2 ps, we still note substantial

blur in the measurement. This demonstrates that pure hardware-based solutions

will capture some of the scattered light, and should be augmented by computational

techniques. We also note that deblurring the Ballistic photons measurement is very

challenging due to the high noise level.

Beyond the qualitative results in Fig. 5-4, we also provide quantitative results:
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Figure 5-5: API optical setup. a) Photo of the API experimental setup. b) Photo of
the tissue phantom with the occluded mask at the back.

Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM) [186].

PSNR performs a pixel-wise comparison of the reconstruction to the ground truth

(higher is better). SSIM takes into account the structure of the image and compares

spatial information between the reconstruction and the ground truth. SSIM ranges

in [0, 1], higher is better. API outperforms the other methods in both metrics.

The wedge shape allows us to evaluate the resolution limits of the different tech-

niques. We estimate the recoverable resolution limit, that is the ability to separate

between two point sources. The recoverable resolution limit is estimated by the dis-

tance between the wedge lines at the point in which they merge. The best resolution

is indicated by blue arrows in Fig. 5-4, and the corresponding resolution in mm is

overlaid on the reconstructions. API demonstrates 2× better resolution than the

Ballistic photons result, and 4× better than the Time Averaged result.

5.3.1 Experimental Implementation Details

Figure 5-5 shows a photo of the optical setup and the tissue phantom. A Ti:Sapph

(795 nm, 0.4 W, 50 fs pulse duration, and 80 MHz repetition rate) is focused onto

a polycarbonate thin diffuser (Edmund Optics, 55-444) 40 cm away from the sam-

ple to produce a remote point source. The point source results in an approximate

pulsed plane wave that illuminates the Intralipid tissue phantom (reduced scattering

coefficient of 100 cm−1). The sensor is a streak camera (Hamamatsu C5680) with a

time resolution of 2 ps and a time window of 1 ns. The sensor has a 1D aperture
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and records the time profile of a horizontal slice of the scene (𝑥 − 𝑡). A set of two

motorized mirrors is scanning the 𝑦 axis of the scene in a periscope configuration to

measure the 305 × 305 × 512 matrix. The exposure time of each 𝑥− 𝑡 slice is 100 ms

(total acquisition time is 30 s per scene). The problem of measuring the full 𝑥− 𝑦− 𝑡

cube in a single shot has already been solved by e.g. time-space multiplexing [69, 118]

and compressive techniques [51].

5.4 Sensitivity and Dynamics

5.4.1 Recoverable Resolution

To evaluate the suggested technique we leverage a Monte Carlo simulation. Here, our

goal is to find the effect of sensor time resolution on the recoverable spatial resolution

as a function of the tissue thickness.

The Monte Carlo simulation with 109 photons is performed on a scattering medium

with a scattering coefficient of 200 cm−1, and an HG anisotropy coefficient of 0.85.

The thickness of the medium is varied in the range of 10−50 mm. The time resolution

of the detector is varied in the range of 2−250 ps. For each configuration, we perform

the simulation with a target that is composed of two point sources separated by a

distance 𝑑. The resulted measurement is then used as an input to the full procedure

defined in Sec. 5.2 to recover the two point source targets. This process is repeated,

each time with a smaller 𝑑 until the recovered target shows a single point source.

The last 𝑑 in which two point sources were recovered defines the recoverable spatial

resolution for the simulated medium thickness and time resolution.

The results of this analysis are shown in Fig. 5-6. As predicted, better temporal

resolution of the sensor results in better recoverable resolution. To further demon-

strate this trend, we plot several cross sections of different sensor temporal resolutions

(Fig. 5-6b), and for several cross sections of different diffuser thicknesses (Fig. 5-6c).

For time resolutions below 50 ps, we gain exponentially better recoverable resolution

for increasing diffuser thickness. This is especially true for the range 12 − 30 mm.
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Figure 5-6: API recoverable resolution as a function of time resolution and medium
thickness. a) Monte Carlo simulation results for varying sensor time resolution and
diffuser thickness; colors represent the best recoverable resolution in mm. b) Vertical
cross sections (for different time resolutions). c) Horizontal cross sections (for different
diffuser thickness).

This demonstrates the benefit of ultrafast time-resolved sensing. The improved

time resolution inputs the reconstruction framework with a more diverse set of mea-

surements, which increases the robustness of the inversion process and allows better

recoverable resolution. Better time resolution helps in two ways: 1) As the medium

gets thicker, 𝑊 (𝑥, 𝑦|𝑡) becomes broader in 𝑥−𝑦 and 𝑡. With better time resolution, the

kernel estimation process is more robust. 2) More time bins provide more instances

of the scattering kernel 𝑊 (𝑥, 𝑦|𝑡), which improves the deconvolution robustness.

5.4.2 Noise Sensitivity

One of the advantages of API is its robustness to measurement noise. This robust-

ness is a result of the time-resolved measurement. Since each time frame captures

the same target corrupted by a different scattering kernel, we effectively measure the

target multiple times which reduces the sensitivity to measurement noise. To quan-

titatively demonstrate this we run Monte Carlo simulation with 109 photons through

a 15 mm thick scattering medium with a scattering coefficient of 200 cm−1, and an

HG anisotropy coefficient of 0.85. Similarly to the previous subsection, the target is

composed of two pin holes separated by a distance 𝑑. The measurement is added with

white Gaussian noise to simulate measurement PSNR in the range of 20− 90 dB. For
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Figure 5-7: API sensitivity to measurement noise. Monte Carlo simulation results
in different levels of measurement noise and its effect on recoverable resolution. API
performs very robustly for PSNR above 39 dB. The experimental measurement PSNR
is noted in red cross (61.7 dB).

each PSNR point, we run multiple simulations with decreasing 𝑑, and the simulated

measurement is processed by the API algorithm to estimate the hidden scene. The

recoverable resolution is defined as the smallest 𝑑 for which the reconstruction result

produces two point sources.

Figure 5-7 shows the results of this analysis, and demonstrates that API performs

very robustly for measurement PSNR above 39 dB. For lower PSNR the first step

of API (estimation of the scattering kernel) is less stable, which results in the rapid

degradation of recoverable resolution.

To compare these simulation results to the experimental measurements, we used

the method suggested by Xinhao et al. [104] to estimate the PSNR in our experimental

measurements, and found it to be 61.7 dB (indicated by red ‘X’ in Fig. 5-7 which is

well above the 39 dB failure point). This indicates that a shorter exposure time would

result in comparable reconstruction quality.

Figure 5-8 demonstrates API’s ability to recover complex targets in the presence of

high measurement noise. The results are based on the above Monte Carlo simulation

with added white Gaussian noise that results in measurement PSNR in the range

of 42.5 − 44.2 dB for the different targets. Similarly to the experimental results,

we compare API to Time Averaging and Ballistic photons recovery. As predicted,

the time averaged version doesn’t suffer from the noise since it averages it over the
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PSNR: 15.0𝑑𝐵, SSIM: 0.60 PSNR: 6.0𝑑𝐵, SSIM: 0.00
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Figure 5-8: API successfully recovers complex targets with noisy measurements.
a) The target mask. b) Time Averaged result. c) Ballistic photon measurement.
d) API recovery. The three rows correspond to three different targets. The measure-
ments PSNR in targets 1-3 are 42.5, 44.5, and 43.9 dB respectively. All reconstructions
are evaluated with PSNR and SSIM.

different frames. The ballistic photons recovery suffers substantially from the noise

indicated by the very poor PSNR and SSIM. API, on the other hand, performs

similarly to the high PSNR experimental measurement and is able to recover the

complicated structures.

5.5 Imaging Through Layered Materials

The main assumption in Eq. 5.1 is a homogeneous medium in the 𝑥− 𝑦 coordinates

(perpendicular to the optical axis). This assumption allowed us to write the forward

model as a convolution along the 𝑥 − 𝑦 coordinates. However, we note that the 𝑧

coordinate (the optical axis) does not appear in the model, and not in the scattering
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kernel. This effectively means that this imaging geometry (and the model) is invariant

to variations along the optical axis. Such variations include changes in the thickness

of the medium, and changes in the optical properties of the material along the optical

axis – for example a material composed of different layers. This is especially important

since skin tissue is composed of different layers.

To demonstrate this invariance, we consider layered material composed of 𝑁 layers.

The thickness of the 𝑛-th layer is 𝑙𝑛, and it has a scattering coefficient of 𝜇𝑇𝑛 , such

that
𝑁∑︀

𝑛=1

𝑙𝑛 = 𝐿, where 𝐿 is the total thickness of the medium. Since our system is

invariant to the composition of the different layers we consider the equivalent uniform

material defined by a thickness 𝐿 and a scattering coefficient:

𝜇𝑇𝑈
=

𝑁∑︁
𝑛=1

𝑙𝑛
𝐿
𝜇𝑇𝑛 (5.14)

That is, the equivalent uniform material’s scattering coefficient is the mean of the

different layers’ scattering coefficient weighted by their thickness. Notably the order

of the layers doesn’t change the properties of the equivalent uniform material.

To demonstrate the validity of this model, we perform Monte Carlo simulations

with 107 photons. We consider two scattering media and their equivalent uniform

medium (total of four different materials):

1. Layered material composed of 15 layers with identical thickness 𝑙𝑛 = 0.2 cm,

such that 𝐿 = 3 cm. 𝜇𝑇𝑛 was sampled from a uniform distribution in the range

[100, 300]cm−1. The scattering coefficient depth profile for the layered material

and its equivalent uniform material are shown in Fig. 5-9a top.

2. Layered material composed of 8 layers with varying thicknesses such that the

total thickness 𝐿 = 2 cm. 𝜇𝑇𝑛 was sampled from a uniform distribution in the

range [100, 300]cm−1. The scattering coefficient depth profile for the layered

material and its equivalent uniform are shown in Fig. 5-9a bottom.

Figure 5-9 shows the result of the four Monte Carlo simulations for a point source

target (columns b,d). We note that the PSFs in columns b and d are indeed nearly
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Figure 5-9: Layered materials and their equivalent uniform have the same PSF. The
two rows show examples of different materials. a) Depth cross section for the scatter-
ing coefficient, and the equivalent uniform (dashed line). b) Monte Carlo simulation
– PSF of the layered material. c) Estimated scattering kernel by API for the lay-
ered material. d) Monte Carlo simulation – PSF of the equivalent uniform material.
e) Estimated scattering kernel by API for the equivalent uniform material. Panels b-e
show an 𝑥− 𝑡 cross section for 𝑦 = 0. Columns b and e are roughly identical (up to
sampling noise), demonstrating that the layered material and its equivalent uniform
share the same PSF, and that API captures the PSF of these four different materials.

identical (the variations are due to sampling noise caused by the Monte Carlo simu-

lation). As expected, the PSFs of the two rows (materials of different thicknesses and

scattering coefficients) are noticeably different. For completeness, Fig. 5-9 shows the

estimated PSF by API (columns c,e). As predicted, API is able to capture the PSF

shape of the different materials.

So far, we have shown that a layered material has an equivalent uniform material,

and both result in the same PSF. In the next step, we simulate 2D masks and use

the Monte Carlo simulation to compute the time-resolved measurement through these

four different materials. The API algorithm is then used to reconstruct the occluded

mask. Fig. 5-10 shows the results for two masks. As can be appreciated from the

figure, all reconstructions look roughly the same. This demonstrates that API is

invariant to variations of thickness and scattering coefficient along the optical axis.
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Material 1 Material 2

Figure 5-10: API is invariant to variations along the optical axis. a) Ground truth.
b-e) Reconstruction results for the four materials defined in Fig. 5-9.

5.6 Discussion and Future Work

The approach presented in this chapter introduces imaging through volumetric scat-

tering in optical transmission mode. In transmission mode, all the optical signal that

arrives at the sensor interacts with the target during its propagation. API leverages

this observation and captures all of the optical signal to computationally invert the

scattering process, which results in improved results at shorter acquisition times com-

pared to pure hardware-based solutions (time-gating). The inversion of the scattering

processes is based on a probabilistic interpretation, that decouples the scattering ker-

nel to a time-only function and a simple space-time function. These two functions are

easy to estimate from the measurement itself, without prior knowledge or assump-

tions of the occluded scene. This interpretation also leads us to the observation that

the time-resolved scattering can be viewed as a time-dependent blur-kernel, where

each time bin in the measurement is a result of convolving the stationary target with

a different blur kernel.

API is based on time-resolved measurements and demonstrated with a streak

camera. Interestingly, a streak camera captures a time-resolved measurement within

a single swipe – that is, it captures only the ballistic photons, and all photons at the
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same cost. Thus, it is even more appealing to use API when a streak camera is the

time-resolved measurement device. This is also similar to measurement with a SPAD

array operating in photon-starved mode. In this regime, the detector has roughly the

same probability to measure ballistic photons and scattered photons which, again,

makes API an appealing solution when using a SPAD detector.

The main limitations of the presented approach include:

∙ Transmission mode – while this is the key observation that allows us to use all

of the optical signal, it is also a key limitation. Certain applications cannot be

performed in transmission mode (for example, remote sensing and depth sensing

in degraded weather). In the context of medical imaging, certain applications

such as mammography are usually performed in transmission mode. But even

for those applications the current approach is limited since there is no tissue

between the illumination source and the target. A potential solution to this

limitation is to create a synchronized pulsed source inside the medium; this

can be achieved with nonlinear effects, e.g. two-photon [85] or localized plasma

discharges [52] which can be used for atmospheric studies [128].

∙ Homogeneous assumption – the suggested approach assumes the scattering

material is homogeneous in the 𝑥 − 𝑦 plane. This can potentially be relaxed

by breaking the model to piecewise smooth areas, but would still be limited.

Furthermore, the ability to image through layered materials assumes there is no

inter-reflection between the layers (i.e. the entire medium has the same index

of refraction). This may be a strong assumption in certain applications.

In summary, we presented API, a computational imaging technique to see through

volumetric scattering. The approach is based on ultrafast time-resolved sensing

(demonstrated with a streak camera), in optical transmission mode. API was demon-

strated in resolving 5.9 mm features through a 1.5 cm thick tissue phantom. The

sensitivity of API to measurement noise, and to the detector time resolution were an-

alyzed. Lastly, the invariance of API to variations along the optical axis was demon-

strated. API has several key advantages: it is wide-field, does not require raster scan,
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and does not require any prior knowledge of the scattering media (calibration-free).

Chapter 6 addresses API’s main limitations with a technique capable of imaging

through extremely dense and heterogeneous fog in optical reflection mode.
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Chapter 6

Imaging Through Extremely Dense

Fog

The main challenges with the approach presented in Chapter 5 are the strict assump-

tions of optical transmission mode, and a convolution model that assumes layered

scattering media. Here, we alleviate these challenges by developing a probabilistic

computational imaging technique to overcome scattered light. The presented ap-

proach recovers the target reflectance and depth map, works in optical reflection

mode, and does not require calibration or prior knowledge about the fog properties.

We experimentally demonstrate it with a wide range of realistic fog conditions: dense

(clear visibility to 30 cm visibility), dynamic, and heterogeneous. For example, we

demonstrate recovering objects 57 cm away from the camera when the visibility is

37 cm. In that case the depth is recovered with a resolution of 1 cm and the target re-

flectance is recovered with an improvement of 4 dB in PSNR and 3.4× reconstruction

quality in SSIM compared to time gating techniques.

Imaging in optical reflection mode is essential for long-range sensing. It is also

fundamentally harder than optical transmission mode. In transmission mode, all of

the measured photons interact with the target, while in reflection mode, most of the

measured photons simply back-reflect from the fog before even reaching the target.

Thus, in reflection mode we must separate between optical signal due to background

and signal due to the target.
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We show that time profiles of photons scattered by fog have a distribution (Gamma)

that is different from photons reflected from objects occluded by fog (Normal). With

this observation, we develop a computational imaging algorithm that separates be-

tween photons back-reflected from the fog and photons reflected from the occluded

object, without prior knowledge about the fog properties. The imaging system is

designed in optical reflection mode with a minimal footprint and is based on LIDAR

hardware. Specifically, we use a single photon avalanche diode (SPAD) camera that

time tags individual detected photons.

Dense fog is a significant limitation in many transportation systems such as self-

driving cars, augmented driving, airplanes, helicopters, drones, and trains. The ability

to see through fog may augment a driver with a heads-up display, showing obstructed

objects on the road in front of the vehicle, or read a road sign that is not visible.

Similar use cases are essential for autonomous vehicles where the future goal is to

allow a car to drive in any weather. Other applications include identifying a clear

flight path for drones, helicopters, and airplanes, and allowing trains to maintain

speed in foggy weather.

The main industry solution for imaging through fog is based on radio waves, e.g.

in 94 GHz [7] where fog is transparent. There are several challenges in using radar

for imaging, including: 1) resolution – due to the long wavelength it is hard or even

impossible to classify objects, and the use cases are limited to detection; and 2) optical

contrast – at such long wavelengths it is only possible to measure bulk properties

of materials [3], and impossible for example to identify road marks and read road

signs. Techniques for long range and large field of view imaging through volumetric

scattering in the visible range are usually limited to time gating, which requires

long integration times and prior knowledge of the scene depth map. Furthermore,

time gating and other techniques to image through scattering media, such as phase

conjugation and acousto-optics, reject scattered photons during the measurement

process. Because these methods reject a substantial amount of the optical signal,

they operate at a low signal-to-noise ratio (SNR).

Instead of rejecting the scattered photons during the measurement process, we
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measure all of the optical signal (both scattered and unscattered photons) and com-

putationally use it to reject the fog. The motivation for our approach is the fact

that the scattered photons hold substantial information about the target and the

scattering medium, and that information is useful for improving imaging capabilities.

Our suggested method uses the scattered photons to estimate the fog properties and

computationally reject it from the measurement. Thus, it works at higher measure-

ment SNR and does not depend on prior knowledge of the scene or scatterer. We

experimentally demonstrate our recovery technique in a fog chamber with realistic fog

conditions (dense, dynamic, and heterogeneous). In our demonstration, the camera

and illumination are adjacent to the fog chamber to further emulate realistic imaging

scenarios.

The main technical contributions of the approach presented in this chapter are:

1. A time-domain technique for seeing through fog, demonstrating the ability to

recover the scene image and depth.

2. An experimental demonstration of the technique in dense, dynamic, and het-

erogeneous fog conditions in a fog chamber (as opposed to milky water or other

phantoms) for a wide range of fog densities (visibilities) and ten different static

scenes.

3. An experimental demonstration of a seamless integration between the suggested

technique to an off-the-shelf computer vision algorithm (OCR) that effectively

enables the OCR to read text occluded by the fog, without any modification to

the OCR.

4. A probabilistic physical model that describes time domain statistics of photons

reflected by fog, and photons reflected by an occluded target.

5. An algorithm that estimates pixel-wise fog parameters from the measurement

itself without any calibration or prior knowledge, as well as an expectation

maximization derivation to refine the parameters.
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6.1 Related Works

Many works in computer vision tackle the problem of vision through the atmosphere

in a regime that assumes a single scatter event [165]. In that case, the degradation

model is an additive background from the fog or haze. Some techniques to overcome

such atmospheric scattering include polarization [153, 176], patch base recurrence [10],

haze line estimation [15], and lightfield imaging [174]. Data-driven techniques for

dehazing have been explored [23], along with rendering techniques [103, 156]. While

most work is dedicated to reflectance recovery, some recover depth of objects through

scattering media [67, 62, 78, 174].

Works that explicitly handle the case of highly scattering materials similar to the

one discussed here include depth sensing [67, 62, 80], cloud tomography [100, 71, 101],

and scattering parameters estimation for computer graphics [55, 56]. Our goal is

different since we aim to perform both reflectance and depth recovery of a scene

occluded by highly scattering media.

Overcoming fog in LIDAR is known as Laser Imaging Through Obscurants (LITO)

[155], where the primary solution to overcome scattering is time gating [111, 136,

39, 97]. These methods work when the object is far away (less coupling with back

reflectance from the fog), but are limited by the signal-to-noise ratio, which requires

long integration times and a stationary scene. Another limitation of time gating is the

need to manually select the time gate bin or to rely on prior depth map knowledge.

In this work, we use single photon counts along with a probabilistic model to

reject the fog. Other examples of using probabilistic models for imaging with a few

photons [89, 162] did not consider imaging through scattering media.

In the closest work to ours, Srinivasa et al. [119] used structured light to spatially

decouple the back reflectance and signal. Here we achieve this with a per-pixel time

profile, which allows imaging through more challenging scattering conditions, and

results in better quality.
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6.2 Time-Resolved Statistics in Fog

Consider a pulsed light source emitting photons into a foggy scene. Adjacent to the

light source is a time-resolved camera. For each measurement frame, each pixel holds

the arrival time of the first detected photon during the frame acquisition time. A

measured photon can be classified as one of the following:

∙ Background photon – a photon that did not interact with the target, thus

it only holds information about the fog. Due to the scattering dynamics, back-

ground photons arrive at different times.

∙ Signal photon – a photon that interacted with the target, thus it holds infor-

mation about the target reflectivity and depth.

∙ Dark counts (noise) – these false detections are uniformly distributed in time.

The dark count rate in our detector is below 30 Hz which is an order of magnitude

less than the background and signal counts in our measurements, thus we neglect it

from our model.

Next, we derive a probabilistic model that describes the statistics of these photon

classes. This model is pixel-wise, which is essential in handling heterogeneous scat-

tering media such as fog. We leverage adjacent pixel statistics to refine our estimates,

as described in section 6.3.2.

Since our detector is single photon sensitive, our measurement per pixel is a list

of photons’ times of arrival. For each photon, we may ask what is the probability

that it is a background photon or a signal photon. This information is encoded in

the photon’s time of arrival. But we start with a different, simpler, question: what

is the probability density function 𝑓𝑇 (𝑡) for photons time of arrival? As we’ll show

next, background and signal photons have different statistics in time. We combine

these into a single model with the law of total probability:

𝑓𝑇 (𝑡) = 𝑓𝑇 (𝑡|𝑆)𝑃𝑆 + 𝑓𝑇 (𝑡|𝐵)𝑃𝐵 (6.1)
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here, 𝑃𝑆, 𝑃𝐵 are the priors to measure signal and background photons respectively.

𝑓𝑇 (𝑡|𝑆), 𝑓𝑇 (𝑡|𝐵) are the probability density functions to measure a photon at time 𝑡,

given that it is a signal or background photon (respectively). The ratio between 𝑃𝐵

and 𝑃𝑆 captures the probability of measuring a background vs. signal photon. Next,

we derive empirical models for 𝑓𝑇 (𝑡|𝑆), 𝑓𝑇 (𝑡|𝐵).

6.2.1 Background Statistics

Based on scattering theory, we know that the distance a photon propagates between

consecutive scattering events is exponentially distributed with a mean of 1/𝜇𝑠 (see

Sec. 2.3). Equivalently the time between scattering events is also exponentially dis-

tributed with a mean of 𝑐𝜇𝑠 (𝑐 is the speed of light). In this chapter, for simpler

notation, we set 𝑐 = 1. In that case, the time between scattering events 𝑘 − 1 and 𝑘

denoted by 𝜏𝑘 has the following probability density function:

𝑓𝜏𝑘(𝑡) = 𝜇𝑠𝑒
−𝜇𝑠𝑡 (6.2)

Since the scattering events are independent, so are the different times 𝜏𝑘. A de-

tected photon undergoes multiple scattering events such that the detection time is

𝑇 =
∑︀𝐾

𝑘=1 𝜏𝑘. The sum of independent exponential random variables is Gamma dis-

tributed 𝑇 ∼ 𝐺𝐴𝑀𝑀𝐴(𝐾,𝜇𝑠), where 𝐾 and 𝜇𝑠 are the shape and rate parameters.

Thus, we can model the probability density of measuring a background photon at

time 𝑡, denoted as 𝑓𝑇 (𝑡|𝐵), with the parameters 𝐾 and 𝜇𝑠 encoding the physical

properties of the fog:

𝑓𝑇 (𝑡|𝐵) =
𝜇𝐾
𝑠

Γ(𝐾)
𝑡(𝐾−1) exp {−𝜇𝑠𝑡} (6.3)

where Γ(𝐾) is the Gamma function. Fig. 6-1 shows time-resolved measurements at

different concentrations of fog and the corresponding Gamma distribution fits. We

measure fog densities with optical thickness (OT) where OT = 0 is clear visibility.

As can be seen in the figure, the Gamma distribution matches the raw measurements
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Figure 6-1: Fog background model. a) Experimental time-resolved measured his-
tograms along with fitted Gamma distributions. The panels correspond to different
optical thicknesses (OT) of fog. The plots show that a Gamma distribution captures
well the dynamics of time-resolved scattering in fog, especially at high densities.
b) Fitted Gamma distributions for a wide range of fog densities. The plots show that
different fog densities (optical thicknesses) result in different time profiles.

well, especially for higher levels of fog. As we show next, our complete pipeline

naturally overcomes this potential model mismatch at lower levels of fog.

6.2.2 Signal Statistics

Next, we model the time of arrival of photons that interacted with the target as

a Gamma-distributed random variable, given that the photon interacted with the

target (with similar arguments to the background model). In practice, we find that

we can use a Normal model for this distribution. This can be justified since in this

case the number of scattering events is large, and when the shape parameter, 𝐾, of

a Gamma distribution is large, it resembles a Normal distribution. Another, more

practical reason is that our detector time resolution along with jitter obscures more

complicated time dynamics.

The Normal distribution mean, 𝜇, corresponds to the depth of the object. The

variance, 𝜎2, encodes the time dynamics these photons undergo. Empirically (as

shown below), the majority of the contribution to 𝜎2 is due to the system time-jitter.

The probability density function of measuring a signal photon at time 𝑡 is:
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𝑓𝑇 (𝑡|𝑆) =
1√

2𝜋𝜎2
exp

{︃
−(𝑡− 𝜇)2

2𝜎2

}︃
(6.4)

6.3 Imaging Algorithm

6.3.1 Pixel-Wise Model Estimation

Equation 6.1 serves as our physical model. It is important to note that our input

per pixel is a list of photons’ arrival times within a fixed exposure window. In a

SPAD detector, for each emitted pulse we may (or not) detect a photon per pixel.

The arrival time is the time between pulse emission and photon detection. We use

multiple arrival times per pixel to estimate the model (more implementation details

are provided in Sec. 6.4).

Next, we describe our approach to estimate the five terms in Eq. 6.1 from raw

measurements of photons’ times of arrival. The estimation pipeline is composed of

four steps: 1) complete time profile estimation, 2) background distribution estima-

tion, 3) signal distribution estimation, and 4) priors estimation. Fig. 6-2 shows the

estimation results for different levels of fog and for targets at different depths.

Estimating the complete time profile 𝑓𝑇 (𝑡)

The individual photon detection events are mapped to the distribution 𝑓𝑇 (𝑡) using a

kernel density estimator (KDE) and denoted bŷ︁𝑓𝑇 (𝑡). KDE has two main advantages

over a traditional histogram: 1) it performs well with a few sampling points, and 2)

there is no need to specify a bin size. While there are techniques for automatic

selection of the KDE bandwidth, here we select 80 ps. This value matches the full-

width-half-max of our detector time response curve.

Estimating the background time dynamics 𝑓𝑇 (𝑡|𝐵)

The physical model describing the background is a Gamma distribution. The distribu-

tion parameters are estimated using maximum likelihood. The estimated distribution
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is denoted by ̂︁𝑓𝑇 (𝑡|𝐵).

Since the majority of the photons are background photons, we use all measured

photons in this step and effectively treat the signal photons as noise. When this

assumption is not valid (less fog), the remainder of the pipeline accounts for the

errors introduced by this step.

The maximum likelihood estimator used here is based on the algorithm in [114].

Specifically, we use an iterative algorithm to estimate 𝐾, with the following update

rule:

1

𝐾𝑛𝑒𝑤
=

1

𝐾
+

1

𝐾2

1
𝑚

𝑚∑︀
𝑖=1

log 𝑥𝑖 − log

(︂
1
𝑚

𝑚∑︀
𝑖=1

𝑥𝑖

)︂
− Ψ(𝐾) + log (𝐾)

1
𝐾
− Ψ′(𝐾)

(6.5)

where 𝑚 is the number of detected photons per pixel, and 𝑥𝑖 is the 𝑖-th photon arrival

time. We iterate over Eq. 6.5 five times, and initialize the iterations with:

𝐾0 =
0.5

1
𝑚

𝑚∑︀
𝑖=1

log 𝑥𝑖 − log

(︂
1
𝑚

𝑚∑︀
𝑖=1

𝑥𝑖

)︂ (6.6)

We then use the estimated 𝐾 to estimate 𝜇𝑠 according to:

𝜇̂𝑠 =
1

𝐾̂

1

𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 (6.7)

Estimating the signal time dynamics 𝑓𝑇 (𝑡|𝑆)

With the probability functions for the complete time profile and background, it is

possible to subtract the two curves and isolate a proxy to the probability density

function of the signal 𝑓𝑇 (𝑡|𝑆) ≈ 𝑓𝑇 (𝑡) − 𝑓𝑇 (𝑡|𝐵). To that end we fit ̂︁𝑓𝑇 (𝑡) −̂︁𝑓𝑇 (𝑡|𝐵)

to a Gaussian curve that estimates the signal ̂︁𝑓𝑇 (𝑡|𝑆). This assumes again 𝑃𝐵 ≈ 1.

Negative values in the subtraction above are set to zero. In this step we effec-

tively stop thinking about these functions as probability densities. Our goal here is to

develop a robust estimator. To account for this mathematical inaccuracy, we also sug-

gest a refinement with an expectation maximization algorithm that is mathematically

accurate (Sec. 6.7).

145



Figure 6-2: Rejecting back reflectance and signal recovery. Demonstrated on four
different levels of fog: optical thicknesses of OT = 1.39, 1.6, 1.89, 2.3 for panels a-d
respectively. In each panel, the left plot shows the recovered KDE, Gamma distri-
bution, estimated signal, and estimated target distributions. The right plot shows
the histogram generated by the raw photon counts and the fitted model (Eq. 6.9)
including the SNR between the two. The target in panels a+b is at a depth that
corresponds to 3.02 ns, and the target in panels c+d is at 2.58 ns. Note that in all
cases there are substantially more background than signal photons.

Estimating the priors 𝑃𝑆, 𝑃𝐵

With the background and signal estimated distributions, the parameters 𝑃𝑆 and 𝑃𝐵

are estimated by solving:

[︁
𝑃𝑆, 𝑃𝐵

]︁
= arg min

0≤𝑃𝑆 ,𝑃𝐵≤1

∑︁
𝑡

(︁
𝑃𝑆
̂︁𝑓𝑇 (𝑡|𝑆) + 𝑃𝐵

̂︁𝑓𝑇 (𝑡|𝐵) −̂︁𝑓𝑇 (𝑡)
)︁2

(6.8)

This is where edge cases in which there is no fog or no target are accounted for – the

solution will be 𝑃𝐵 → 0 or 𝑃𝑆 → 0 accordingly. Note that the solution to Eq. 6.8 is

a simple least squares.

Back to Photon Counts

So far, all estimators were probability density functions. These are mapped to actual

photon counts 𝑁(𝑡), the number of photons measured at time bin 𝑡, by computing

a normalization factor 𝛼̂ such that
∑︀
𝑡

𝑁(𝑡) = 𝛼̂
∑︀
𝑡

(︁ ̂︀𝑃𝑆
̂︁𝑓𝑇 (𝑡|𝑆) + ̂︀𝑃𝐵

̂︁𝑓𝑇 (𝑡|𝐵)
)︁
. This

step is necessary for consistent results across pixels that receive a different number of
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photons. The final estimated model is:

𝑁̂(𝑡) = 𝛼̂
(︁ ̂︀𝑃𝑆

̂︁𝑓𝑇 (𝑡|𝑆) + ̂︀𝑃𝐵
̂︁𝑓𝑇 (𝑡|𝐵)

)︁
(6.9)

Figure 6-2 shows the steps in the recovery process for different cases of fog and

targets. It also provides the SNR between the estimated model and the measured

histogram. Fig. 6-3 shows similar results over a wider range of conditions, which

demonstrates the success of the suggested technique to model the physical measure-

ments.

6.3.2 Leveraging Spatial Correlations

The model presented so far was pixel-wise. This approach is beneficial in handling

heterogeneous fog. However, it ignores the spatial correlations that obviously exist

in the scene. For example, it is safe to assume that the fog properties 𝐾,𝜇𝑠 are a

smooth function of space (or at least piecewise smooth). It is also known that the

scene depth and reflectance are piecewise smooth.

To leverage these properties we introduce a total variation denoiser. Such a de-

noiser operates on an input image 𝐼noisy and solves the following optimization problem:

𝐼 = arg min
𝐼

∑︁
𝑚,𝑛

√︁
𝐼𝑥

2(𝑚,𝑛) + 𝐼𝑦
2(𝑚,𝑛) + 𝜆‖𝐼noisy − 𝐼‖2

2 (6.10)

We use the ℓ1 formulation which is known to produce more piecewise smooth re-

sults [137, 28]. Here we adapt the implementation in [106], and apply the denoiser

on the spatial recovery of 𝐾, 𝜇𝑠, 𝜇, and 𝜎2.
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Figure 6-3: The probabilistic algorithm successfully models physical measurements
in a wide range of fog conditions, and target distances. Different rows correspond
to different optical thicknesses. Different columns correspond to targets at different
distances, and a background case. The acquisition time is fixed and identical for all
examples. Due to the significant difference in the number of detected photons in these
conditions, all plots are normalized to 1, and the total number of photon counts is
reported in the title of each plot. The model fails to estimate the target for higher
levels of fog and when the target is farther away.
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6.3.3 Target Depth and Reflectance Recovery

The properties of the target are encoded by the signal part of 6.9:

̂︁𝑁𝑆(𝑡) = 𝛼̂ ̂︀𝑃𝑆
1√

2𝜋𝜎̂2
exp

{︃
−(𝑡− 𝜇̂)2

2𝜎̂2

}︃
(6.11)

Depth Estimation:

The target depth is encoded by the ballistic photons. These would be captured by the

early part of the Normal distribution. In practice, the estimated Normal variances in

our experiments are in the order of 1−2 time bins. This is due to both scattering and

measurement jitter. We found that using 𝜇̂ is a robust estimate of the target depth.

Since the Normal distribution is fitted whether or not there is an object in the pixel,

we use the reflectance estimation as a confidence map to reject pixels where no target

exists (see below).

Reflectance Estimation:

The reflectance value per pixel is captured by the non time-dependent coefficients of

Eq. 6.11. That is: 𝑅 = 𝛼̂ ̂︀𝑃𝑆
1√
2𝜋𝜎̂2

. We found that including the variance dependent

normalization factor provided cleaner results. We further refine the reflectance esti-

mation by multiplying each pixel by the square of its estimated depth (to account for

the one-over-depth-square drop-off).

Further Refinement:

In case of low fog, the reflectance is governed by the illumination intensity profile.

To account for that we utilize an intensity calibration measurement which was per-

formed offline at the center of our fog chamber. The intensity profile is accounted for

only when our estimated optical thickness (̂︂OT) is less than 1 (the optical thickness

estimation is described below). To create a smooth transition, we use a linear inter-

polation based on the estimated optical thickness between 0 to 1. When ̂︂OT = 0, the

intensity profile is completely accounted for, and when ̂︂OT ≥ 1 it is ignored.
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6.3.4 Optical Thickness Estimation

The background model captures basic physical properties of the fog, as discussed

in Sec. 6.2.1. Here, we show that the background model parameters are a strong

predictor for the measured optical thickness.

In our experiments we measure the optical thickness as a function of time while

fog is added to the fog chamber. This measurement is not used in the reconstruction

procedure. We use a single measurement taken without a target in the fog chamber

to develop a predictor for the optical thickness based on estimated Gamma model

parameters. The results are shown in Fig. 6-4. We found that a model based on 𝐾̂

is a robust model for the optical thickness. Our optical thickness predictor is:

̂︂OT = 𝜃1𝑒
𝜃2𝐾̂ (6.12)

where the 𝜃-s are the estimated model parameters. We perform a robust fit which

results in a model with 𝑅2 = 0.9987.

Note that the model slightly underestimates the OT for OT > 2.2. We attempted

to add a dependency in 𝜇𝑠 which helped to fix this underestimation at high OT, but

made the prediction noisier at lower OT.

This prediction model is powerful for three reasons:

1. It demonstrates that the estimated parameters of the Gamma distribution map

to a physical quantity. This is another evidence for the validity of the back-

ground model.

2. For many computer vision applications, it is very beneficial to know what is the

optical thickness. For example, it can serve as a predictor for the visibility, or

the maximum depth, in which our algorithm works well. This may be beneficial

to determine cars maximum driving speed.

3. As described in the previous section, this estimate helps to refine the recovered

result.
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Figure 6-4: Fog background model predicts optical thickness. The estimated back-
ground model parameters are used to predict the optical thickness. a) Ground truth
and the prediction as a function of time while fog is added to the chamber. b) The
optical thickness prediction vs. ground truth, along with a straight line for reference.

It is important to note that the optical thickness in our experiment is measured

in transmission mode, while our background model is for reflection mode. Thus, we

don’t expect to directly estimate the physical mean free path using this predictor.

Instead, we find this to be a useful measure of fog density.

6.4 Experimental Setup

The experimental setup is shown in Fig. 6-5. The detector is a PhotonForce PF32

SPAD camera that is composed of 32×32 pixels. Each pixel is single-photon sensitive

and time-tags measured photons with a nominal time resolution of 56 ps. The camera

exposure time is set to 100 µs (the PF32 measures the arrival time of the first detected

photon per pixel per exposure). Each reconstruction is composed of 20,000 frames.

In these settings we produce a new reconstruction every 100 µs, while using a sliding

window with a history of 2 s.

For illumination, a SuperK pulsed super-continuum laser is spectrally filtered to

a narrow band around 580 nm (the camera is equipped with a similar filter to reject

the background). The laser repetition rate is 80 MHz with a pulse duration of 5 ps

and an average laser optical power of 0.15 W. The laser is diffused before entering

151



a)

b)
SPAD

LaserFlashlight

Fog Generator

Target

Regular Camera 

Power Meter

Figure 6-5: Experimental setup. a) The fog chamber with a mannequin inside. This
photograph was taken with minimal fog density and shows the SPAD, pulsed laser,
traditional camera, and flashlight. Illumination and measurement are performed
through a glass window in the chamber. A power meter is placed inside the fog
chamber to quantify the optical thickness. The fog generator is composed of an ul-
trasonic transducer in water and a fan placed on the far side of the chamber (not
visible). b) Example of the fog generator inside a small open aquarium. In this case
the fan is off, which results in low concentration.

the chamber, and it flood-illuminates the scene (without fog). The camera and laser

are positioned in reflection mode.

To evaluate and compare our method we placed a regular monochromatic camera

(Point Grey Chameleon) along with an independent CW flashlight at a wavelength

of 850 nm. The flashlight average optical power is 1 W and the camera quantum

efficiency at this wavelength is 15 %. The different wavelengths were chosen to make

sure that the two imaging systems can operate simultaneously without affecting one

another. Spectral optical filters are placed on the SPAD and regular cameras to

ensure that each camera measures contributions only from its dedicated light source.

The flashlight floodlit the tank and was positioned such that it did not illuminate

the target directly to reduce the glare from the fog. The camera integration time is

100 ms. In all of the reported results, the background lights are turned off so that

both imaging systems equally benefit from a directional illumination source.
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The cameras and illumination sources are placed adjacent to the fog chamber.

The chamber dimensions are 0.5 × 0.5 × 1 m3. To generate fog, a powerful ultrasonic

transducer is placed in water along with a fan (similar to a cold mist humidifier).

The fog generator is placed at the far side of the fog chamber. This configuration is

capable of producing dense fog with visibility of a few centimeters into the chamber.

The far side of the chamber also holds an optical power meter to measure the fog’s

optical thickness. Optical thickness at time 𝑡 is calculated by − log (𝑃𝑡/𝑃0), where

𝑃0 is the power measured when there is no fog, and 𝑃𝑡 is the power at time 𝑡. This

measurement is not used as part of the reconstruction process.

6.5 Experimental Results

The experimental system described above was used to evaluate the suggested ap-

proach. Ten different targets are placed in the fog chamber at different locations.

The fog generator is turned on, and a continuous capture of SPAD frames is per-

formed until the fog density in the chamber saturates (in the order of 15 min).

To evaluate the results, we compare our reflectance reconstruction to the mea-

surement taken with the regular camera. Note that the NIR wavelength used for the

regular camera undergoes less scattering which results in a sharper image, especially

at low fog densities. Because of the different perspective and acquisition properties,

the regular camera is considered a qualitative comparison. The second comparison is

to photon counting with the SPAD camera. In this mode, the camera simply accu-

mulates individual detected photon events (non time-aware). The third comparison

is to time gating. In this mode the time bin was selected manually to be the first time

bin that holds information about the target. We compute Peak SNR (PSNR) and

structural similarity (SSIM, ranges in [0, 1], higher is better) to quantitatively com-

pare our reflectance recovery method to photon counting and time gating (the chosen

ground truth is taken from a photon counting measurement without fog). Similarly,

the regular camera results are compared to a regular photo taken without fog.

Figure 6-6 shows results for a target composed of a set of four ‘E’ shapes (3×5 cm2)
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Figure 6-6: Recovery of a multi-depth target at realistic, dense, dynamic, and het-
erogeneous fog, with the ‘E’ shapes. Different columns demonstrate cases of different
levels of fog. Rows show different reconstructions including: a) Image taken with a
regular camera (the longer wavelength used for this measurement undergoes less scat-
tering, which results in less challenging imaging conditions). b) Result with SPAD
camera in photon counting mode. c) Result of time gating using the SPAD camera,
where the time gate was selected manually to the first time bin with meaningful infor-
mation. d) Reflectance reconstruction with our technique. e) Depth reconstruction
with our technique. SSIM and PSNR metrics provide quantitative comparisons. The
left column shows a measurement without fog (ground truth).

at different orientations and depths (36, 43, 47, 53 cm from the camera). As can be

seen from the results, our method is able to reject the significant backscatter that

governs the regular camera and photon counting results. In comparison to time gating

we note that time gating is much noisier, requires one to manually select the correct

time bin, and recovers only one depth. The suggested method outperforms these

techniques in both SSIM and PSNR, and degrades much slower with increasing fog

levels. Furthermore, the method accurately recovers the depth of the different targets

up to OT = 2.2, after which it loses the farther target while recovering the closer

ones.
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Figure 6-7: Recovery of complicated structures occluded by dense fog. Top – a
Mannequin 35 cm away from the camera. Bottom – a Mannequin 70 cm away from
the camera. See Fig. 6-6 for panels description.
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Figure 6-8: The suggested approach produces superior results over the entire range
of fog levels. Showing image recovery accuracy vs. optical thickness. The accuracy
is evaluated with a) SSIM, and b) PSNR on the ‘E’ shapes.

These results are demonstrated in more experiments as follows. Fig. 6-7 shows

recovery of a mannequin (20 cm tall) placed at the depth of 35 cm and 70 cm away.

In both cases, our technique is able to reject the background around the mannequin

very effectively while the other results are saturated by the background. This is more

apparent when the target is farther away. Note that when the target is farther away,

we recover it up to OT = 1.5 after which we recover a coarse shape and depth.

When the target is closer, we resolve the object features up to OT = 2.4. This result

demonstrates the tradeoff between fog level and maximum detectable depth. When

there is less fog, our technique recovers more distant targets.

6.6 Analysis

Unless otherwise noted, the analysis described is experimentally performed exactly

as described above, with the same code and parameters.

6.6.1 Image Recovery Accuracy

Figures 6-6, 6-7 demonstrated the reconstruction quality at specific optical thick-

nesses. It is useful to quantitatively compare our technique to the references (regular

camera, photon counting, and time gating) over the full range of fog densities consid-

ered here. This is demonstrated in Fig. 6-8 for the ‘E’-shaped targets.
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Figure 6-9: Depth recovery accuracy as a function of optical thickness. Demonstrated
on four targets (columns). Top row shows the segmented mask used for each target.
Bottom row shows the recovered depth for each target as a function of optical thick-
ness. The dashed black line indicates the ground truth based on the first few frames
without fog. The red cross indicates OT = 2.2 which is the optical thickness in which
we lose the farther targets.

Target Distance 53 cm 47 cm 43 cm 36 cm
OT = 0 → 2.7 −2.318 ± 5.054 −0.035 ± 3.31 0.067 ± 1.097 1.401 ± 2.002
OT = 0 → 2.2 0.339 ± 0.189 0.725 ± 0.308 0.569 ± 0.285 0.627 ± 0.387

Table 6.1: Depth recovery error for the four targets in Fig. 6-9. The top row considers
all captured data (up to OT = 2.7). The bottom row considers data up to OT = 2.2
(the optical thickness in which we lose the farther targets). All numbers are provided
in cm.

We note that our approach provides substantially better quality over the full range

of optical thickness, and is especially noticeable from the SSIM metric. Note that the

time gating approach starts at a low quality since it recovers just one plane.

6.6.2 Depth Recovery Accuracy

We analyze the accuracy in depth recovery with the ‘E’ shapes. Each letter is

segmented, such that we probe the accuracy in recovering the following depths:

53, 47, 43, 36 cm. For each target plane and each time point, we use the median

of the estimated depth.

The depth estimation for the four depths is plotted as a function of optical thick-

ness in Fig. 6-9. As a baseline for the recovery, we also plot the depth based on the
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Figure 6-10: Depth recovery accuracy for a slanted plane. a) The estimated depth
profile as a function of spatial pixel for different optical thicknesses. The ground
truth depth profile is the thick blue line. b) Error and standard deviation bars for the
deviation of the estimated depth profile from a line, as a function of optical thickness.

first frames (with no fog). As the visibility reduces, the depth accuracy drops (first

to farther targets). As expected from our model, we tend to estimate the target to

be slightly farther away (within a centimeter). That is because the depth estimation

is based on the Normal distribution mean, which is biased by scattered light.

Another appreciable point in the figure is the point of failure. Once a target is lost,

the accuracy drops dramatically because we have false detections at these pixels. See

for example in Fig. 6-6 columns for OT = 2.4, 2.6. Table 6.1 provides the overall error

for each depth. We provide two numbers for each target: 1) based on all data (up to

OT = 2.7), and 2) up to OT = 2.2, where all targets are properly resolvable. When

there is sufficient signal and we resolve the target, our approach has a sub-centimeter

bias and error for targets in the range of 36 − 53 cm.

To further evaluate the depth recovery accuracy, we place a slanted white wall

inside the fog chamber. The wall covers most of the camera field of view (22 pixels),

such that the closest point to the camera is at a distance of 32 cm, and the furthest

point is at a distance of 38 cm. Similarly to previous experiments, we add fog to the

chamber and report the depth reconstruction result as a function of optical thickness.

Fig. 6-10 shows the results of this experiment. In Fig. 6-10a, we plot the recovered

depth profile as a function of the spatial pixels for different optical thicknesses. In

this result, we note that the estimate bias is a function of the target depth. For closer
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targets, the bias is larger than for more distant targets, and at 38 cm it diminishes.

Another noticeable property is demonstrated in Fig. 6-10b – the deviation from a

line. In that case, for each optical thickness we recover the depth profile and perform

a simple linear fit. We then calculate the mean and standard deviation error of the

depth profile from its fitted line. Effectively we estimate how far the depth profile

is from a line. As can be seen in the figure, the error bias and standard deviation

increase as the fog density increases. In both figures, we note that the error is bounded

by 2 cm throughout.

6.6.3 Reflectance Recovery Accuracy

To measure the accuracy of our reflectance recovery, we place a checkerboard-like

target, where each square is of a different shade of gray. In total, we have six different

shades, ranging from black to white, spread on a 6 × 6 grid, such that each color

appears six times (Fig. 6-11a). The target size is 10×10 cm2. We place the target at a

distance of 70 cm inside our fog chamber and repeat the experiment and reconstruction

process. Since we recover relative reflectance, the reconstruction is rescaled to [0, 1].

Then, the mean value across the six different squares for each color is calculated. In

the end, we have six reflectance values per recovered frame. The results are shown in

Fig. 6-11, and our recovery is compared to time gating and photon counting.

We note that this is a particularly challenging task. First, the target is far away.

Second, the photon flux that illuminates each square changes dramatically as the

fog is added – initially, it is dominated by the illumination spatial profile, and later

mostly affected by the heterogeneous scattering. From Fig. 6-11, we note that our

technique correctly sorts all colors up to OT = 1.7, where we start to observe mixing.

At lower fog densities, our technique recovers the correct color with marginal error

(and performing better on the brighter colors). On the other hand, the time gating

and photon counting techniques present significant mixing for OT ≥ 1.1. The photon

counting technique fails for OT ≥ 1.2 when the recovery is dominated by the fog.
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Figure 6-11: Reflectance recovery accuracy. a) Photon count measurement of the re-
flectance target without fog. b) Recovery of the reflectance values for the six different
values with our technique, as a function of optical thickness. Ground truth marked by
black horizontal dashed lines. c-d) similar to b, for time gating and photon counting
respectively, demonstrating mixing of colors at lower levels of fog.

6.6.4 How Many Photons Are Measured?

One of the challenges in imaging through fog is that as the fog level increases, we

measure less overall photons, and the ratio between background and signal photons

increases. Both are making the problem more challenging. To demonstrate this trend

we plot the total photon counts measured at a SPAD pixel while fog is being added.

We use the ‘E’ targets measurement, and compare the number of photons measured

at a pixel selected on one of the target planes, as well as a background pixel. These

results are plotted in Fig. 6-12.

For this comparison, we used the same settings as before, specifically 80 MHz

laser repetition rate with a frame exposure time of 100 µs window and 20,000 frames

per data point. In this case, each pixel can record up to 1 photon out of 8000

pulses per exposure time, and we aggregate 20,000 such frames for analysis. As

demonstrated in Fig. 6-12a, for OT < 1 we get more photons on a target pixel as

opposed to a background pixel. For OT > 1 the number of photon counts on pixels

with and without a target is comparable. This is also apparent in the photon count

reconstructions shown in Fig. 6-6. Another noticeable property is that as the fog level

increases, we get less photons on pixels with a target, and more photons on pixels

without a target. We note that our photon acquisition efficiency for OT > 1 is on

the order of 1 : 60,000 (for every 60,000 pulses we capture 1 photon per pixel).
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Figure 6-12: Photon counts drop as fog is added. Photon counts per pixel on targets
at four different depths, as well as a pixel without a target (background). a) Photon
counts vs. optical thickness. b) Same as a) where the curves are normalized by the
photon counts at OT = 0.

Lastly, the results in Fig. 6-12a are also a function of the illumination spatial

profile (which is very noticeable for the lower levels of fog). To account for that, we

normalize each curve based on the photon counts at OT = 0. These results are shown

in Fig. 6-12b. As can be seen, the number of photons measured on pixels with a target

drops by an order of 2×, while the number of photons measured on pixels without

a target increases by an order of 4×. Together, this indicates that the contrast is

reduced by an order of 8× between the no fog case, and fog levels above OT = 1 (and

10× for OT > 1.5). This clearly demonstrates the challenge in imaging with photon

counting mode or a regular camera.

6.6.5 How Many Photons Are Needed For Reconstruction?

In all of our reconstructions we used a fixed value of 20,000 frames. We now analyze

the sensitivity of our results to this parameter. The sensitivity to acquisition window

duration is similar to measurement SNR sensitivity analysis in a classic acquisition

system. We use the ‘E’ dataset and perform reconstructions (for our technique,

time gating, and photon counting), while varying the number of available frames.

These results are presented in Fig. 6-13. For this analysis, we use the SSIM quality

measure to compare the results where the ground truth is the recovery with no fog

and maximum frames (30,000 in this case).
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recovery of the ‘E’ shapes as a function of optical thickness, each curve is the result of
a different number of frames. a-c) Our technique, time gating, and photon counting
respectively. Ours performs equally well with fewer photons at low fog.
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Figure 6-14: Qualitative results of recovery with varying exposure window. Columns
show different optical thicknesses, rows are different allowed number of frames. This
demonstrates the adaptive property of our approach. Time gating marginally gains
from having more frames (even at lower levels of fog). Photon counting does not gain
from having more frames regardless of the fog level.

As expected, when the fog level is low, we require fewer frames. As the fog level

rises we gain from having more frames. More specifically, up to OT = 0.5, 1000

frames are sufficient. Then, up to OT = 1.5, 10,000 frames are enough, followed by a

gain from having 20,000 frames as used in our other experiments.

Comparing time gating and photon counting, we note that time gating always

gains from more photon counts, while photon counting performs roughly the same for

all options. We also provide qualitative results in Fig. 6-14 that clearly demonstrate
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that our approach requires fewer photons when the level of fog is lower.

The decision on the number of frames to use is done in software and does not

affect the measurement process. Thus, it is possible to adaptively change the win-

dow duration as a function of the estimated optical thickness. The challenge in this

approach is that the recovery quality is a function of the optical thickness and the

target distance. Thus, by reducing the number of photons we may potentially miss

farther away targets at denser fog.

6.7 EM Algorithm

The imaging algorithm included several assumptions, most notably the following sub-

traction: 𝑓𝑇 (𝑡|𝑆) ≈ 𝑓𝑇 (𝑡) − 𝑓𝑇 (𝑡|𝐵) (which also approximated 𝑃𝐵 ≈ 1). We can con-

sider the estimated model as an initializer to an expectation maximization (EM)

algorithm to refine the estimates and fix any steps that may have been mathemati-

cally inaccurate. EM is a natural fit to the problem we have here — splitting data into

two distributions, while having to estimate the parameters of these distributions. The

problem is, of course, ill-posed without a guarantee to converge to a global minimum.

But in our case we already have a good initial guess, which makes EM appealing.

By using EM we can also select the photons that hit the target from the data, as

it is naturally estimated as part of the algorithm. We note that EM algorithms are

in general very hard to initialize, and it’ll be challenging to use an EM algorithm to

completely replace our algorithm.

An EM algorithm is composed of two steps:

∙ Expectation Step: given the parameters of the distributions, it calculates the

probabilities for a photon to belong to each class (membership probabilities).

∙ Maximization Step: with the membership probabilities, it calculates the dis-

tributions’ parameters while taking into account the membership probabilities

as weights.

Appendix C provides the derivation for the update rules of these steps for a mixture
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Figure 6-15: Recovery with the additional expectation maximization step. Different
columns show different levels of fog. The rows compare the recovery with and without
the additional EM step for reflectance and depth. We note that up to OT = 1.4,
including the EM step improves the results, and after that the results degrade.

of Gamma and Normal probabilities.

In our implementation we start with the initial parameters as described above,

and then perform 500 iterations of the EM algorithm. Due to numerical instability of

the algorithm we perform 5 different restarts, and in each restart we slightly perturb

the initial values. In total we perform 2500 iterations. The selected parameters are

chosen based on the iteration that minimized the log-likelihood of the EM algorithm.

At this point we can separate between background and signal photons. To that

end, we evaluate the probability that each photon belongs to the signal or background

class: ̂︁𝑃𝑆
̂︁𝑓𝑇 (𝑥𝑖|𝑆)

Background
≶

Signal

̂︁𝑃𝐵
̂︁𝑓𝑇 (𝑥𝑖|𝐵) (6.13)

If the expression to the left (right) is larger we classify this photon as a signal (back-

ground) photon.

The number of classified signal photons 𝑁𝑆 corresponds to the target reflectivity

at that pixel. The mean of the signal photons corresponds to the target distance at
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that pixel. Figure 6-15 shows recovery results with the EM algorithm.

In practice, we find that the EM algorithm performs better at low levels of fog.

When the fog level is higher, it actually degrades the result. Further analysis of these

cases revealed the following: Because photons at the tail of the Gamma distribution

are associated with the Normal distribution, the Gamma distribution shifts to the

left, which results in a mismatch of the tail that is accounted for by shifting the

Normal distribution. Obviously, this solution will have a lower log-likelihood, but it

is nevertheless a wrong solution (it matches well more background photons at the

expense of fewer signal photons). This is a result of model mismatch (the physics is

more complicated than our Gamma and Normal model).

Another strong limitation of the EM algorithm is the computational cost. Without

the EM step, our algorithm runs at about ∼ 5 s per frame (this time is governed by

the total variation denoising steps), and with the EM addition, this number increases

to ∼ 200 s. While these numbers are based on an unoptimized Matlab code on a

standard desktop computer, they reflect the significant run-time penalty of this step.

Due to these two limitations we prefer our basic model.

6.8 Reading in Dense Fog

Many computer vision and robotics problems, such as recognition and identification,

are solved today with machine learning. Here, we consider such tasks in the case

of fog. One potential solution is to train data-driven models on measurements with

fog. This may be very challenging, as some of these tasks are particularly hard, even

without obstructions such as fog. Furthermore, as discussed here extensively, fog is

a continuum of densities. This would require gathering data in a wide range of fog

conditions, which is very challenging. The alternative we suggest here is to use our

approach to produce a photo and a depth map as if the fog were not there. These

reconstructions can be fed into the computer vision algorithms that were trained

with fog-less data as is. Thus the data-sensitive part of the algorithm can be trained

without fog, and when integrated with our approach, it can work in foggy scenarios.
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Figure 6-16: Reading in dense fog – recovery of the ‘125’ target. The white text at
the top left corner of each panel shows the OCR result on that image. ‘?’ indicates
no text found. See Fig. 6-6 for panels description.

We demonstrate this approach in the task of optical character recognition (OCR).

To that end, we use an off-the-shelf OCR by the Google Vision API. To the best

of our knowledge, this OCR was not trained specifically to work with low contrast

inputs that characterize fog. We place several letters and digits in the fog chamber

and repeat the experiment and recovery procedures. The OCR performance on our

reflectance recovery is compared to regular camera, photon counting, and time gating.

Figure 6-16 shows recovery examples for a target composed of the digits ‘125’

placed at a distance of 45 cm from the camera. As can be seen, the OCR performs

well on our reconstruction, while it fails on the noisy time gating, as well as the low

contrast measurements that characterize the photon count and regular camera recov-

ery. Interestingly, the OCR fails to recover the digits even when it is still relatively

easy for humans. This further demonstrates the challenge and need for descattering

solutions, as demonstrated in this dissertation. Fig. 6-17 shows another example with
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Figure 6-17: Reading in dense fog – Recovery of the ‘Re0’ target. The white text at
the top left corner of each panel shows the OCR result on that image. ‘?’ indicates
no text found. See Fig. 6-6 for panels description.

a target composed of the letters ‘ReO’, which was placed 70 cm away from the camera.

Since this target is farther away, it is even more challenging.

In total we performed four experiments with the following text targets:

∙ The digits ‘125’ were placed 45 cm away from the camera. Each digit was 4 cm

tall, and the entire target was 10.5 cm wide.

∙ The letters ‘ReO’ were placed 70 cm away from the camera. Each letter was

3.5 cm tall, and the entire target was 10 cm wide.

∙ The letters ‘THRU’ were placed 35 cm away from the camera. Each letter was

4 cm tall, and the entire target was 13 cm wide.

∙ The letters ‘STOP’ were placed 34 cm away from the camera. Each letter was

3 cm tall, and the entire target was 11 cm wide.
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Figure 6-18: Reading in dense fog – Accuracy as a function of optical thickness. Our
approach allows the off-the-shelf OCR to correctly classify text over a wide range of
fog conditions. Four different targets are demonstrated, the panels’ titles indicate the
text of the target and its distance from the camera. The y-axis is the percentage of
correctly classified characters.

We evaluate the OCR performance on each of these targets with our method and

compared to regular camera, photon counting, and time gating. To get quantitative

results we define a correct prediction metric as the percentage of correctly classified

letters or digits. We allow confusions between similar uppercase and lowercase letters,

as well as similar characters (O and 0, P and F, etc.). The correct prediction metric

is reported for a wide range of optical thicknesses in Fig. 6-18.

This result demonstrates the significant advantage of our approach. As can be

seen, with our approach the off-the-shelf OCR is able to recover the text, while with

the other approaches it fails rather quickly. The most apparent result is for the ‘ReO’

target, which was the most challenging in terms of target size and distance. In this

case, the other techniques fail very quickly at OT = 0.5, while our approach can

classify correctly all characters up to OT = 1.2, and at least two correct characters

up to OT = 1.5. Similar trends are observed with the other targets. We note that

the four-letter targets (‘THRU’ and ‘STOP’) were not illuminated uniformly, which

results in a loss of the rightmost letter rather quickly in all cases.
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6.9 Discussion

6.9.1 Limitations

The key limitations of the suggested approach are:

1. Our approach is pixel-wise and neglects the spatial nature of scattering. While

this is enough to reject the background from the measurement, it is not able to

spatially deblur the signal. Spatial blurring may potentially be more prominent

in large scale scenes and high-resolution sensors.

2. The demonstrated results are produced with a history window of 2 s (with a

mean of 2440 photons per recovery). While this is enough for dynamic fog with

a stationary scene, it is not enough for dynamic scenes. This may be alleviated

with dynamic window techniques as described above.

6.9.2 Sensitivity to Sensor Spatial Resolution

The sensor used here is composed of only 32×32 pixels. SPAD cameras with megapixel

spatial resolution and nanosecond time resolution have already been demonstrated [110].

Such sensors would also be useful as part of an imaging framework that accounts for

the complete space-time scattering profile similar to the one suggested in Chapter 5.

This would potentially sharpen the results further.

6.9.3 Sensitivity to Sensor Time Resolution

The suggested imaging method is based on the notion that background and signal

photons have different statistics in time. This allows one to distinguish between them

and reject the back reflectance from the fog. As the detector time resolution reduces,

this ability diminishes. The relevant time scales to consider are the standard deviation

of the background Gamma distribution and Normal target distribution. The sensor

time resolution should be smaller than both. Another aspect of time resolution is its

mapping to depth resolution and accuracy, which is likely to be stricter in large scale

scenes.

169



6.9.4 Sources for Model Mismatch

Several aspects were neglected from our model:

Noise

As mentioned before, the dark counts in our experiments are negligible compared to

the signal. This may be an issue when attempting to recover with fewer frames.

Absorption

The model essentially treats absorption as any other optical loss in the system. Since

the model only takes into account measured photons, it is invariant to the number of

actual photons sent to the scene. Thus, absorption and other losses are irrelevant to

the reconstruction procedure and would only affect the total acquisition time.

Background Model

The background model used here assumes that 𝐾, the number of scattering events

before detection, is a constant parameter similar to 𝜇𝑠. In practice 𝐾 is a random

variable that is realized per photon detection. We also note that the mean of the

background Gamma model is E𝑇 |𝐵 = 𝐾/𝜇𝑠. We found this relationship to be ex-

tremely accurate with Monte Carlo simulations. Given the photon time of arrival 𝑥,

the number of scattering events it underwent is 𝐾 = 𝑥𝜇𝑠. We found this predictor to

work well above 𝐾 = 10 for a wide range of scattering conditions. Thus we conclude

that while 𝐾 should be an independent variable from 𝑇 |𝐵, they are in fact highly

correlated. As a result, this assumption is not a strong source for model mismatch,

particularly at high densities of fog.

We also explored other modeling alternatives, for example, Stable distributions

which are common in Brownian motion modeling. We found that a Stable distribution

is usually a very good fit for our background; however it was not as robust as a Gamma

distribution. This can be explained by the noisy nature of our measurement, and the

challenge of fitting a Stable distribution that does not have a closed form probability
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density function.

It is worth noting that fitting heavy-tailed distributions, such as the one observed

in fog, is usually challenging. In our case, a practical choice was a Gamma distribution

which is physically grounded, and relatively easy to estimate. Furthermore, based on

our measurements, we note that the Gamma distributions are an extremely good fit

when the fog level is high. For low levels of fog, we observe distributions that are more

uniform and exhibit less dynamics in time. As discussed in the algorithm description,

we naturally overcome this model mismatch when calculating the prior probabilities,

since in low fog situations the signal component is dominant anyway.

Signal Model

The signal model used here is a Normal distribution. We found this to be a practical

and efficient approximation. However, there is one obvious flaw with this approxima-

tion – it results in biased depth estimates (up to 2 cm for 35 cm away targets, and

dropping as the target is farther away). An unbiased depth estimate would be based

on the ballistic photons (or estimating their time of arrival).

A potentially useful model that we explored was based on an Inverse Gaussian

or Lévy distributions. These distributions are the solution for the first arrival time

of a Brownian motion particle to a specific location in the volume. The Lévy model

is the solution for the case without a drift, and the Inverse Gaussian is the solution

for the case with a drift. The distributions parameters directly model the distance to

the source – which is exactly the depth we want to estimate here. We found several

fundamental issues with this approach:

1. Estimating a mixture of two heavy tail distributions (background and signal) is

numerically challenging. One of the biggest advantages of using the short tail

Normal distribution model is that it is sufficiently different from the background

model and is easier to estimate (including available robust estimators).

2. The underlying Brownian motion assumes: 1) isotropic scattering, and 2) the

source is a delta function in time. Both are not accurate in our case because:
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a) Fog is mostly forward scattering and not isotropic; and, b) the scattering on

the way to the target illuminates the target with a non-delta like function.

3. Challenging fit: Some of these models require estimating at what time the target

starts to reflect light. This estimate is challenging, as it is dependent on the

background heavy tail distribution, which is unstable in our case.

While one of these models would potentially be more theoretically accurate, and

provide an unbiased estimate of the depth, in practice we found it to be highly

unstable, and choose to use the Normal distribution instead. It is possible that

sensors with better time resolution would provide better sampling of the time profile,

with less jitter, in which case these models would be easier to estimate and their

results would be more meaningful.

6.9.5 Real World Considerations

Two points should be taken into account when considering using the suggested ap-

proach for other scenarios and real-world applications:

∙ Scene scale: We expect our technique to work as-is for larger scale scenes

with similar optical thicknesses. Consider a specific concentration of fog in our

chamber. When the chamber volume increases, the fog concentration is re-

duced. The number of scattering events remains the same, while the mean free

path increases, and the effective scattering is similar. Since the mean free path

increases, we expect to relax the demand on the sensor time resolution. How-

ever, as the distance between scattering events increases, the spatial nature of

the scattering may become more significant. Tackling such cases would require

detectors with higher spatial resolution and the consideration of the space-time

scattering profile discussed above.

∙ Use of existing hardware: The development of LIDAR systems for self-

driving cars is an ongoing process. Some of these systems are based on pulsed

illumination with time gating for depth mapping and are usually based on raster
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scanning. This is very similar to the SPAD camera used here. And, as men-

tioned above, we expect to relax the demand for high time resolution. Thus, in

general, we don’t expect hardware to be a significant constraint.

6.10 Conclusions and Future Works

We experimentally demonstrated a probabilistic computational imaging technique for

seeing through dense, dynamic, and heterogeneous fog. The technique provides the

image and depth map of an occluded scene and was demonstrated in a wide range

of optical thicknesses, and with ten different targets and geometries. The technique

does not require any prior knowledge about the fog, which enables it to operate, by

design, in a wide range of conditions. Furthermore, the hardware requirements of the

system are similar to LIDAR, making it suitable for various imaging applications.

One of the notable examples presented in this chapter is the introduction of new

capabilities to an off-the-shelf OCR for detecting and classifying text in dense fog,

without modifying the OCR. We showed that we can simply feed the output of our

technique to the OCR and seamlessly identify text occluded by dense fog. This

demonstrates the potential to extend many other computer vision tasks to operate in

degraded weather conditions without (or with minimal) modifications to such classi-

fication, detection, or recognition algorithms.

Potential future work includes:

∙ Better coupling between the suggested technique and more demanding computer

vision algorithms. For example, recognition tasks that involve the photo and

depth map of the scene in degraded weather.

∙ Further refinement of the algorithm. For example, by limiting the EM algorithm

to refine the input without significant deviation from the initial condition, or

an alternative algorithm that would jointly estimate the six model parameters.

∙ Accounting for spatial blur. As mentioned in the limitations discussion, our

model ignores the spatial scattering that signal photons undergo between the
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target and detector. This can potentially be solved by combining the approach

suggested in Chapter 5 to overcome such blur. Our initial studies found that,

at least in the cases presented here, this spatial blur has limited effect. However

it may be more noticeable with higher resolution sensors, or larger scale scenes.

∙ Coupling with structured light or raster scan. Most LIDAR systems raster scan

the scene. Thus raster scanning, instead of flood illumination, is a natural

extension. In general, raster scan of the scene will result in an easier estimation

problem. The current approach naturally extends to such cases, but specifically

accounting for such structured light in the image formation model may result

in better results.

∙ Scattering beyond fog. While the presented approach was demonstrated in fog,

it is relevant to other scattering media. For example, we have already performed

initial tests in turbid water [150]. It may also be beneficial in other occluding

regimes, such as smoke or dust.
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Chapter 7

Conclusions

By developing probabilistic and data-driven algorithms that leverage statis-

tics of scattered photons, we tackled the dependency of computational

imaging on highly calibrated and accurate physical models as well as long

acquisition times. These are fundamental limitations in computational imaging,

which prohibit scaling solutions outside the lab. This challenge is even worse in

imaging through scattering with visible light, which is a highly ill-posed problem.

The techniques presented here aim to tackle these limitations by design. With

shorter acquisition times, calibration invariant imaging, data-driven com-

putational imaging, optimized compressive imaging, and robust probabilistic

frameworks, we hope computational imaging through scattering media will have a

tangible real-world impact. We covered four different scattering regimes and applica-

tions as summarized next.

Chapter 3 introduced the case of lensless imaging as a simple example of sparse

scattering. In that case, the lack of a lens results in a single scatter event. To over-

come that challenge we introduced FemtoPixel — a compressive time-resolved single

pixel imaging framework. As part of this framework, we studied, from first principles,

the space-to-time mapping performed by time-resolved measurements. This analysis

provided the foundation for time-resolved computational imaging. This chapter also

introduced an algorithm for ideal sensor placement and an algorithm for generating

ideal compressive patterns. Both algorithms demonstrated the interesting interplay
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between algorithms and optical system design. With these algorithms we demon-

strated that the FemtoPixel framework can result in acquisition times that are 50×

faster compared to traditional single-pixel cameras.

Chapter 4 introduced data-driven computational imaging. We showed that with

proper training data, the resulting algorithm can be invariant to perturbations in

system calibration. Furthermore, the algorithm generalizes to perturbations that are

outside of the training set (for example the illumination incident position is outside

the range considered during training). With this approach, we trained a data-driven

model on synthetic data, and only then tested it in a lab experiment. The model

was able to perform without ever being calibrated to the imaging system. Another

advantage of the technique is the ability to run in real-time (due to the non-iterative

nature of the algorithm). These contributions were experimentally demonstrated by

classifying the pose of a mannequin hidden by a sheet of paper, an example for sparse

scattering.

Chapter 5 considered the challenging case of volumetric scattering in imaging

through a tissue phantom. To tackle that challenge, we introduced the concept of

All Photons Imaging — the idea that scattered light holds useful information about

the hidden target, and that it shouldn’t be rejected in the measurement process

(which is what many other techniques try to accomplish). We showed that with time-

resolved measurement, each measured frame is a realization of the target corrupted

by a different blur kernel. Furthermore, we developed an algorithm to estimate these

blur kernels from the measurement and independently of the target. This allows

our approach to operate without a need for prior knowledge about the scattering

(calibration free). We experimentally demonstrated API in imaging through a 1.5 cm

tissue phantom and achieved a spatial resolution of 5.9 mm. Lastly, we showed that

API is invariant to variations along the optical axis, such as the thickness of the

medium. More specifically, we showed that a layered material has an equivalent

uniform material. The layered and equivalent uniform materials share the same PSF

and result in the same reconstruction capabilities.

Finally, Chapter 6 tackled the most challenging scattering problem. In this case
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we experimentally demonstrate seeing through fog. The fog density varies all the way

between clear conditions (no fog) to visibilities as low as 30 cm. Furthermore, in these

conditions, the fog is heterogeneous and dynamic. Beyond the challenging scattering

conditions, the demonstrated geometry is reflection mode. In that case, most of the

measured photons back-reflect from the fog, and only a small portion actually hit the

target before detection. To overcome these challenges, we introduced a probabilistic

imaging framework that effectively separates between background and signal photons.

This technique recovers the occluded scene reflectance and depth maps. For example,

we demonstrated the recovery of objects that are 57 cm away from the sensor when

the visibility was only 37 cm.

The techniques described here relaxed fundamental requirements in computational

imaging for long acquisition times and highly calibrated models. Furthermore, the

presented techniques are suitable for long range and wide-field sensing, making them

suitable for real-world applications. To achieve these goals our solutions were inspired

by different research fields including signal processing, machine learning, optimization,

statistics, and computer vision. These algorithms were grounded by physics and

optics, and enriched by time-resolved sensing. We believe that computational imaging

through scattering with visible light will enable a wide range of novel applications in

vehicles and medical imaging.

7.1 Future Outlook

Finally, we discuss our contributions with a broader perspective and potential future

follow ups and applications:

∙ A probabilistic interpretation of scattering and its use in computa-

tional imaging. A probabilistic interpretation of scattering helped us derive

the model in Chapter 5 and, it was an essential component of the algorithm

in Chapter 6. We find such probabilistic interpretations useful for two main

reasons: 1) Scattering is naturally modeled as a stochastic phenomenon, thus

probabilistic modeling is often easier, and matches well to the physics of the
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problem. 2) Probabilistic modeling opens the door to tools from probability

theory, which again help the model, and recovery algorithms.

∙ Single-photon-sensitive detectors for computational imaging. We ex-

pect to see broader adoption of such techniques driven by the cost reduction

of single-photon sensitive sensors, and recent performance improvements (in-

creased spatial resolution, improved temporal resolution, better sensitivity).

These devices expose the stochastic nature of light, making it even more ap-

pealing to use probabilistic modeling. We foresee several computational imaging

applications that would benefit from single photon sensitivity: 1) Overcom-

ing scattering — as discussed extensively in this dissertation. 2) Operating at

extremely low photon flux. Because of the favorable noise model of SPADs

(no signal-dependent noise) they are a better choice for imaging in challenging

situations. We have already shown some of these benefits in the context of

scattering [150]. 3) SPADs would also be useful outside the visible part of the

spectrum, for example in x-ray imaging.

∙ Data-driven computational imaging. While data-driven techniques have

revolutionized computer vision, there are still many open opportunities in com-

putational imaging. Our work on calibration invariant imaging was one of the

first demonstrations of data-driven computational imaging in the field, and the

first to leverage it for calibration invariant imaging. There are many more prob-

lems that data-driven techniques can help to solve in computational imaging,

as described next:

– Beyond classification. In Chapter 4, we demonstrated a classification

task that is considered easier than regression. However, classification can

also be used for target localization (by discretizing the target volume).

More novel architectures, such as an autoencoder, can be used for full scene

reconstruction. In that case, the network is trained with image pairs, such

that the input is the measurement from the camera point of view, and

the output is a photo taken from a virtual point of view where the target
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volume is visible. We have recently demonstrated these in [171]. Another

promising architecture is based on generative models (e.g. [59]). In this

case the network can be composed of two parts. The first is an encoder

that encodes the underlying scene information from the measurement (this

part is similar to the classification task we demonstrated). The second

part is a decoder that would generate the full scene based on the recovered

information (similar to a graphics rendering program). While each part

has been demonstrated separately, the combination is challenging.

– What does the network learn? While this question is broadly consid-

ered open in the context of machine learning, we can try to answer parts

of it in the context of computational imaging. More specifically, we can

try to estimate the network sensitivity to different inputs. This can help

in sensor selection, and scene optimization. We have recently taken the

first steps in this direction in [172].

– Data generation techniques. In Chapter 4 we used an accurate and

costly (in terms of run time) MC forward model. As a result, data genera-

tion was the bottleneck of our approach. New promising generative models

for data generation (e.g. [92] and GANs) can alleviate this challenge. This

can help accelerate the preparation of training data that is required when

encountering a new scene.

– Different types of scattering. As discussed in the introduction, the

problem of imaging through sparse scattering is equivalent to the problem

of seeing around corners. Recently, we demonstrated data-driven imaging

around corners [168] and beyond line of sight [172]. Data-driven approaches

can also be used to alleviate problems of volumetric scattering. A direction

we recently explored in the context of imaging through fog [152]. The main

challenge in the case of volumetric scattering is the long rendering process

which makes the problem extremely challenging when trying to address a

wide range of scattering conditions, as done in Chapter 6.
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– Physically explainable data-driven computational imaging. In

Chapter 4 we introduced an end-to-end data-driven approach, where it

is hard to introduce any physical or mathematical intuition to the solu-

tion. However, there are two more alternatives that leverage data-driven

techniques which are more physically explainable. To better understand

these approaches, we note that a classic inverse problem is usually written

as:

𝑥̂ = arg min
𝑥

{︀
‖A𝑥− 𝑏‖22 + 𝑅(𝑥)

}︀
(7.1)

where A is the forward model, 𝑏 is the measurement, 𝑅(𝑥) is some reg-

ularizer, and 𝑥 is the target. When we consider this equation, we note

that the end-to-end data-driven version is a mapping 𝑏 → 𝑥, such that the

entire model is replaced with a data-driven algorithm. However, we can

also replace just a part of the solution with a data-driven approach:

1. Learning the regularizer — instead of using some broad statistics such

as sparsity, we can learn the target distribution from data. This can

make the regularizer more specific to the considered problem. In that

case, the solution can be decomposed into two steps: first solving for

the measurement (also known as the data term) - ‖A𝑥− 𝑏‖22, and

second, replacing the regularizer with a data-driven denoiser. These

steps can be done iteratively until convergence. We note that the data-

driven regularizer can be different for each step in the iteration (i.e.

different models trained separately [42]). Here, we have the freedom to

introduce physics into the construction of A (similar to the approach

presented in Chapter 5).

2. Learning the forward model — this is similar to the approach sug-

gested in Chapter 4, but instead the algorithm can specifically enforce

a known regularizer. Another option is to split the forward model into

multiple stages where each stage is learned with data, and the physics

of the problem defines the connections between the different modules.
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∙ All Photons Imaging. One of the key ideas presented in this thesis is the

use of scattered light for imaging (while many other techniques aim to reject

the scattered light and lock onto the ballistic component). Fusing computa-

tional imaging with time-resolved sensing of scattered light enabled us to image

through scattering media at shorter acquisition times and with better quality.

This was demonstrated in Chapters 5, 6.

The All Photons Imaging concept can be extended to other domains and spec-

tra. For example, in x-ray imaging it is common to reject scattered light in

the measurement process. With All Photons Imaging it would be possible to

leverage the scattered light to: 1) Reduce radiation dosage (since the scattered

photons are used for reconstruction instead of rejected before the measurement).

2) Extract further clinically meaningful data, for example, the scattering prop-

erties of the tissue (current x-ray systems recover the absorption properties of

the tissue). Similarly, this concept can be useful in other regimes such as THz,

and RF.

∙ Imaging through challenging scattering in optical reflection mode.

The technique to image through dense fog in Chapter 6 ignored the scattering

of photons on the way back from the target to the camera. While we have

not found this to be a significant issue in our optical setup, it may become

a prominent effect in other cases. A potential solution to this limitation is

to leverage the approach presented in Chapter 5. In that case we use the

signal and background separation technique suggested in Chapter 6, followed

by a descattering step as suggested in Chapter 5. It is worth noting that the

background photons should provide useful information for the descattering step

since both are a result of the same physical process. In fact, we can model the

problem as follows:

𝑚(𝑥, 𝑦, 𝑡) = 𝐾(𝑥, 𝑦, 𝑡; 𝑧) * [𝑠(𝑥, 𝑦, 𝑧) + 𝜆] (7.2)

where 𝐾(𝑥, 𝑦, 𝑡; 𝑧) is a depth dependent scattering kernel, 𝑠(𝑥, 𝑦, 𝑧) is the oc-
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cluded scene, and 𝜆 is the fog reflectivity. Note that 𝐾(𝑥, 𝑦, 𝑡; 𝑧) * 𝑠(𝑥, 𝑦, 𝑧)

is similar to the model in Chapter 5, and that the two terms in parentheses

represent the signal and background term similarly to Chapter 6.

∙ Time-resolved sensing for computational imaging through scattering.

In all chapters we showed, independently, that time-resolved computational

imaging is superior to non-time aware techniques. Time-resolved sensing en-

abled the presented systems to operate at faster acquisition times, lower mea-

surement SNR, and resulted in better reconstruction quality. We hope that

TCSPC SPAD systems will become a commodity in the near future and al-

low for cost-effective time-resolved sensing solutions. The use of time-resolved

sensing also opens the door for radically new imaging modalities as we recently

demonstrated [70].

As discussed in Sec. 6.9.5, when considering imaging through scattering with

time-resolved measurement, the time response due to the scattering has some

variance 𝜎2. This variance is a function of the scattering mean free path 𝜇𝑠, and

the number of scattering events before detection. To overcome the scattering,

the detector must have a time resolution 𝑇 such that 𝑇 ≪ 𝜎. Alternatively

(and potentially more demanding) is that 𝑇 ∼ 𝜇𝑠 (where we consider 𝜇𝑠 as the

mean time between scattering events). As the time resolution improves due

to hardware advances, we foresee new applications with visible light, such as

medical imaging (where the mean free path is shorter compared to fog), or even

reading through a closed book [132] with visible light.

∙ Optimized compressive imaging. Chapters 5 and 6 demonstrated imaging

with flood illumination which is substantially harder compared to raster scan-

ning. However, it is obvious that using structured light would provide even

more information that will result in better recovery. The structured light opti-

mization algorithm presented in Chapter 3 would be useful for that application.

In that case, the scattering will act as the physical operator to be “conjugated”

by the structured light. Furthermore, as demonstrated in Chapter 3 there is a
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clear trade-off between structured light and time resolution, which can be lever-

aged for more complicated scattering conditions. This is a direction we started

pursuing in the context of imaging through tissue [108].

This approach can also benefit other problems in computational imaging. For

example, when the measurement is of the form 𝑦 = GH𝑥 where H is the

imaging forward model and G is the compressive measurement. Then it is

possible to optimize G to minimize the number of required compressive patterns

by following a similar procedure to the one in Appendix B. There are many

applications where this approach can be beneficial, for example MRI, CT, DOT,

and also navigation and estimation problems such as SLAM.

∙ Compressive imaging for reflectance and depth recovery. The technique

presented in Chapter 3 assumed a known geometry and recovered the target

reflectance. Other techniques assumed known reflectance and recovered target

depth. Since the measurement hardware in these cases is very similar, it would

be possible to combine the two techniques. The algorithm can be based, for

example, on iterating between depth to reflectance recovery. It would also be

possible to optimize the compressive masks, as suggested above.

∼

I believe that computational imaging will play a fundamental role in shaping the

future of imaging through scattering media. This thesis has laid the foundations

by demonstrating practical use cases of computational imaging through occlusions.

These include calibration invariant algorithms for robust imaging systems; imaging

algorithms based on all of the optical signal for better reconstruction quality and

faster acquisition times; and probabilistic modeling that makes scattering problems

easier to estimate without prior knowledge on the scattering media. I believe these

will be essential with the growing demand for practical solutions to image through

occlusions.
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Appendix A

Photon Transport in Scattering

Media as a Random Walk

Here we derive the diffusion equation from a random walk perspective which results

in Brownian motion. For simplicity, the derivation is done in 1D and can be easily

extended to higher dimensions.

Consider the probability density function Φ(𝑥, 𝑡) to find a photon at position 𝑥

and time 𝑡. The photon makes a step of length ∆ with some probability density

function 𝜇(∆). We start by developing a Taylor expansion of the photon at time 𝑡+𝜏

(after the step):

Φ(𝑥, 𝑡 + 𝜏) = Φ(𝑥, 𝑡) + 𝜏
𝜕Φ

𝜕𝑡
+ · · · (A.1)

We note that that Φ(𝑥, 𝑡+𝜏) is a result of the transition Φ(𝑥−∆, 𝑡) → Φ(𝑥, 𝑡+𝜏),

and we must average over all possible ∆:

Φ(𝑥, 𝑡 + 𝜏) =

∞∫︁
−∞

Φ(𝑥− ∆, 𝑡)𝜇(∆)𝑑∆ (A.2)

We can develop a Taylor expansion of Φ(𝑥− ∆, 𝑡):

Φ(𝑥− ∆, 𝑡) = Φ(𝑥, 𝑡) − ∆
𝜕Φ

𝜕𝑥
+

∆2

2

𝜕2Φ

𝜕𝑥2
+ · · · (A.3)
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Such that:

∞∫︁
−∞

Φ(𝑥− ∆, 𝑡)𝜇(∆)𝑑∆ =

= Φ(𝑥, 𝑡)

∞∫︁
−∞

𝜇(∆)𝑑∆ − 𝜕Φ

𝜕𝑥

∞∫︁
−∞

∆𝜇(∆)𝑑∆ +
𝜕2Φ

𝜕𝑥2

∞∫︁
−∞

∆2

2
𝜇(∆)𝑑∆ + · · · (A.4)

The first integral on the right is equal to 1 by the definition of 𝜇(∆), so:

∞∫︁
−∞

Φ(𝑥− ∆, 𝑡)𝜇(∆)𝑑∆ =

= Φ(𝑥, 𝑡) − 𝜕Φ

𝜕𝑥

∞∫︁
−∞

∆𝜇(∆)𝑑∆ +
𝜕2Φ

𝜕𝑥2

∞∫︁
−∞

∆2

2
𝜇(∆)𝑑∆ + · · · (A.5)

Combining Eqs A.1, A.2, A.5 we get:

𝜏
𝜕Φ

𝜕𝑡
= −𝜕Φ

𝜕𝑥

∞∫︁
−∞

∆𝜇(∆)𝑑∆ +
𝜕2Φ

𝜕𝑥2

∞∫︁
−∞

∆2

2
𝜇(∆)𝑑∆ (A.6)

Next, we define:

𝑣 =
1

𝜏

∞∫︁
−∞

∆𝜇(∆)𝑑∆ (A.7)

𝐷 =
1

2𝜏

∞∫︁
−∞

∆2𝜇(∆)𝑑∆ (A.8)

Such that:
𝜕Φ

𝜕𝑡
+ 𝑣

𝜕Φ

𝜕𝑥
= 𝐷

𝜕2Φ

𝜕𝑥2
(A.9)

Which is the Brownian motion equation with drift.

The main assumptions here are:

1. Homogeneous and isotropic medium.

2. First and second moments of 𝜇(∆) are finite (there is no explicit need to define
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a specific distribution such as exponential etc.).

3. Removing second order terms in time, and third order terms in space.

A.1 Solving the Brownian Motion PDE

The derivation here follows [131]. To solve Eq. A.9 we assume infinite medium with

a source at the origin. We start with Fourier transform of Φ(𝑥, 𝑡):

Φ̃(𝑘, 𝑡) =

∫︁
Φ(𝑥, 𝑡)𝑒𝑗𝑘𝑥𝑑𝑥 (A.10)

Which simplifies Eq. A.9 to:

˙̃Φ(𝑘, 𝑡) = (𝑗𝑘𝑣 −𝐷𝑘2)Φ(𝑘, 𝑡) (A.11)

With the simple solution:

Φ(𝑘, 𝑡) = Φ(𝑘, 0)𝑒(𝑗𝑘𝑣−𝐷𝑘2)𝑡 = 𝑒(𝑗𝑘𝑣−𝐷𝑘2)𝑡 (A.12)

Taking the inverse Fourier transform results in:

Φ(𝑥, 𝑡) =
1

2𝜋

∫︁
𝑒(𝑗𝑘𝑣−𝐷𝑘2)𝑡−𝑗𝑘𝑥𝑑𝑘 (A.13)

with the solution:

Φ(𝑥, 𝑡) =
1√

4𝜋𝐷𝑡
exp

{︃
−(𝑥− 𝑣𝑡)2

4𝐷𝑡

}︃
(A.14)

This is the well known Gaussian distribution with a time dependent variance as in

Eq. 2.10. Solving the Brownian motion for higher dimensions is similar and results

in different normalization factors.
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Appendix B

Derivation of Illumination Patterns

Optimization Algorithm for

FemtoPixel

Here we provide a derivation for efficiently calculating the cost function in Eq. 3.15

and its gradient. We focus on the data term since the derivatives of the suggested

regularizes are straightforward.

The data term of the cost function to minimize:

𝛾 =
⃦⃦⃦
I𝐿 − Q̃𝑇 Q̃

⃦⃦⃦2
𝐹

(B.1)

We define ΛΛΛ such that its 𝑗-th row is g𝑇
𝑗 (ΛΛΛ is an 𝑀 ×𝐿 matrix). Our goal is to find

ΛΛΛ which minimizes 𝛾.

First, we define O = Q̃𝑇 Q̃ such that:

𝛾 = ‖I𝐿 −O‖2𝐹 = 𝑇𝑟
{︁

(I𝐿 −O) (I𝐿 −O)𝑇
}︁

= 𝑇𝑟 {I𝐿} − 2𝑇𝑟 {O} + 𝑇𝑟
{︀
OO𝑇

}︀
= ‖O‖2𝐹 − 𝐿

(B.2)

since 𝑇𝑟 {O} = 𝐿. Next, we define Q̃ = QP where P is a diagonal matrix with the

189



inverse of the columns norm:

P𝑛,𝑛 =
1√︃

𝑀𝐾𝑁∑︀
𝑎=1

Q𝑎,𝑛
2

=
1⎯⎸⎸⎷(︃ 𝑀∑︀

𝑗=1

Λ𝑗,𝑛
2

)︃(︂
𝐾𝑁∑︀
𝑖=1

H̄2
𝑖,𝑛

)︂ (B.3)

This allows us to write:

O = Q̃𝑇 Q̃ = P𝑇Q𝑇QP = P
𝑀∑︁
𝑗=1

(︀
DΛ𝑗

H̄𝑇 H̄DΛ𝑗

)︀
P (B.4)

where DΛ𝑗
is a diagonal matrix with the 𝑗-th row of Λ on the diagonal. Next we note

that: [︀
H̄DΛj

]︀
𝑛,𝑚

=
𝐿∑︁

𝑎=1

H̄𝑛,𝑎

[︀
DΛj

]︀
𝑎,𝑚

= H̄𝑛,𝑚Λ𝑗,𝑚 (B.5)

and:

O𝑛,𝑚 = P𝑛,𝑛

𝑀∑︁
𝑗=1

(︁
Λ𝑗,𝑛

[︀
H̄TH̄

]︀
𝑛,𝑚

Λ𝑗,𝑚

)︁
P𝑚,𝑚 (B.6)

which can be simplified to:

O𝑛,𝑚 = W𝑛,𝑚

𝑀∑︀
𝑗=1

Λ𝑗,𝑛Λ𝑗,𝑚⎯⎸⎸⎷(︃ 𝑀∑︀
𝑗=1

Λ𝑗,𝑛
2

)︃(︃
𝑀∑︀
𝑗=1

Λ𝑗,𝑚
2

)︃ (B.7)

with

W𝑛,𝑚 =

(︀
H̄𝑇 H̄

)︀
𝑛,𝑚√︃(︂

𝐾∑︀
𝑖=1

H𝑖,𝑛
2

)︂(︂
𝐾∑︀
𝑖=1

H𝑖,𝑚
2

)︂ (B.8)

Lastly, we define:

Φ = Λ𝑇Λ (B.9)

such that:

O𝑛,𝑚 = W𝑛,𝑚
Φ𝑛,𝑚√︀

Φ𝑛,𝑛Φ𝑚,𝑚

(B.10)
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which allows us to write:

O =
(︁√︀

SΦ

)︁−1

(W ⊙Φ)
(︁√︀

SΦ

)︁−1

(B.11)

where SΦ is a diagonal matrix with the diagonal entries of Φ, and ⊙ denotes element

wise multiplication. Finally:

𝛾 =

⃦⃦⃦⃦(︁√︀
SΦ

)︁−1

(W ⊙Φ)
(︁√︀

SΦ

)︁−1
⃦⃦⃦⃦2
𝐹

− 𝐿 (B.12)

We note that W (Eq. B.8) is a constant matrix for the illumination pattern optimiza-

tion and can be calculated a priori. Eq. B.9 and B.12 provide the final expression for

𝛾(Λ).

We now develop an expression for the gradient of the cost function. Considering

the chain rule for matrices [122]:

[︂
𝑑𝛾

𝑑Λ

]︂
𝑛,𝑚

=
𝐿∑︁

𝑎=1

𝐿∑︁
𝑏=1

𝑑𝛾(Φ)

𝑑Φ𝑎,𝑏

𝑑Φ𝑎,𝑏

𝑑Λ𝑛,𝑚

(B.13)

Starting with the first term, if 𝑎 ̸= 𝑏:

𝑑𝛾

𝑑Φ𝑎,𝑏

= W𝑎,𝑏
2 2Φ𝑎,𝑏

Φ𝑎,𝑎Φ𝑏,𝑏

(B.14)

and, if 𝑎 = 𝑏:
𝑑𝛾

𝑑Φ𝑎,𝑎

= −
𝑛∑︁

𝑐=1

W𝑎,𝑐
2Φ𝑎,𝑐

2 + W𝑐,𝑎
2Φ𝑐,𝑎

2

Φ𝑎,𝑎
2Φ𝑐,𝑐

𝛿𝑐̸=𝑎 (B.15)

where 𝛿 is Kronecker delta. The second term in Eq. B.13 is given by [122]:

𝑑Φ𝑎,𝑏

𝑑Λ𝑛,𝑚

= 𝛿𝑚𝑏Λ𝑛,𝑎 + 𝛿𝑚𝑎Λ𝑛,𝑏 (B.16)
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Combining Eqs. B.13 through B.16 we get:

[︂
𝑑𝛾

𝑑Λ

]︂
𝑛,𝑚

=
𝐿∑︁

𝑎=1

𝐿∑︁
𝑏=1

𝐸1𝛿𝑎𝑏 (𝛿𝑚𝑏Λ𝑛,𝑎 + 𝛿𝑚𝑎Λ𝑛,𝑏)

+
𝐿∑︁

𝑎=1

𝐿∑︁
𝑏=1

𝐸2𝛿𝑎̸=𝑏 (𝛿𝑚𝑏Λ𝑛,𝑎 + 𝛿𝑚𝑎Λ𝑛,𝑏)

(B.17)

where 𝐸1 and 𝐸2 are the terms in Eqs. B.14 and B.15 respectively. After some

algebra we get:

[︂
𝑑𝛾

𝑑Λ

]︂
𝑛𝑚

=
2

Φ𝑚𝑚

𝐿∑︁
𝑎=1
𝑎̸=𝑚

[︂
Λ𝑛𝑎

Φ𝑎𝑎

(︀
W𝑎𝑚

2Φ𝑎𝑚 + W𝑚𝑎
2Φ𝑚𝑎

)︀
−

Λ𝑛𝑚

Φ𝑎𝑎Φ𝑚𝑚

(︀
W𝑎𝑚

2Φ𝑎𝑚
2 + W𝑚𝑎

2Φ𝑚𝑎
2
)︀ ]︂

(B.18)

Lastly, we define:

𝛼1 = W ⊙W ⊙Φ⊙ I−

𝛼2 = W ⊙W ⊙Φ⊙Φ⊙ I−
(B.19)

where, I− = 1 − I𝐿 (matrix with all ones except for zeros on the diagonal), which

allows us to write the final gradient as:

c1 = ΛSΦ
−1
(︀
𝛼1 + 𝛼1

𝑇
)︀

c2 =
(︀
Λ⊙

(︀
1𝑀×𝐿SΦ

−1
(︀
𝛼2 + 𝛼2

𝑇
)︀
SΦ

−1
)︀)︀

𝑑𝛾

𝑑Λ
= 2 (c1 − c2)SΦ

−1

(B.20)

where 1𝑀×𝐿 is an 𝑀 × 𝐿 matrix with all ones.
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Appendix C

Expectation Maximization Algorithm

for Imaging Through Fog

Here we provide the derivation for the EM update rules used in the seeing through

fog chapter 6.7.

We start with the log-likelihood function

ℓ (𝜃) =
𝑚∑︁
𝑖=1

log𝑃
(︀
𝑥𝑖; 𝜃

)︀
(C.1)

Here, 𝜃 = {𝜇, 𝜎2, 𝐾, 𝜇𝑠, 𝑃𝑆, 𝑃𝐵} are the latent variables describing the model.

We consider 𝑖 = 1..𝑚 data points, such that 𝑥𝑖 is the measured time of arrival

of the 𝑖-th photon. The assignment of each photon to the background class (𝐵) or

signal class (𝑆) is defined by 𝑧𝑖 ∈ {𝐵, 𝑆}, and we denote 𝑗 = 𝐵, 𝑆. Which helps to

define the membership probability:

𝑄𝑖
(︀
𝑧𝑖
)︀

= 𝑃
(︀
𝑍𝑖|𝑥𝑖; 𝜃

)︀
(C.2)

For completeness, the distributions used here are:

𝑃
(︀
𝑥𝑖|𝑧𝑖 = 𝑆;𝜇, 𝜎2

)︀
=

1√
2𝜋𝜎2

exp

{︃
−(𝑥𝑖 − 𝜇)

2

2𝜎2

}︃
(C.3)
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𝑃
(︀
𝑥𝑖|𝑧𝑖 = 𝐵;𝐾,𝜇𝑠

)︀
=

1

Γ(𝐾)𝜇𝑠
𝐾

(︀
𝑥𝑖
)︀𝐾−1

exp

{︂
−𝑥𝑖

𝜇𝑠

}︂
(C.4)

And, the prior probabilities are:

𝑃𝑆 = 𝑃 (𝑧𝑖 = 𝑆;𝜇, 𝜎2)

𝑃𝐵 = 𝑃 (𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)
(C.5)

The EM algorithm is composed of two steps: Expectation and Maximization that

are iterated.

C.1 Expectation Step

Our goal in the Expectation step (E step for short) is to estimate the probability

that the 𝑖− 𝑡ℎ sample belongs to the two potential probabilities: 𝑤𝑖
𝐵 for the Gamma

distribution and 𝑤𝑖
𝑆 for the signal distribution.

𝑤𝑖
𝑗 = 𝑄

(︀
𝑧𝑖 = 𝑗

)︀
= 𝑃

(︀
𝑧𝑖 = 𝑗|𝜃𝑗

)︀
(C.6)

Here, 𝜃𝐵 = (𝐾,𝜇𝑠) and 𝜃𝑆 = (𝜇, 𝜎2). The probability that the 𝑖-th photon belongs

to the signal class is:

𝑤𝑖
𝑆 = 𝑃

(︀
𝑧𝑖 = 𝑆|𝑥𝑖;𝑃𝑆, 𝑃𝐵, 𝜇, 𝜎

2, 𝐾, 𝜇𝑠

)︀
=

=
𝑃 (𝑥𝑖|𝑧𝑖 = 𝑆;𝜇, 𝜎2)𝑃 (𝑧𝑖 = 𝑆;𝜇, 𝜎2)

𝑃 (𝑥𝑖|𝑧𝑖 = 𝑆;𝜇, 𝜎2)𝑃 (𝑧𝑖 = 𝑆;𝜇, 𝜎2) + 𝑃 (𝑥𝑖|𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)𝑃 (𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)

(C.7)

And, the probability that the 𝑖-th photon belongs to the background class is:

𝑤𝑖
𝐵 = 𝑃

(︀
𝑧𝑖 = 𝐵|𝑥𝑖;𝑃𝑆, 𝑃𝐵, 𝜇, 𝜎

2, 𝐾, 𝜇𝑠

)︀
=

=
𝑃 (𝑥𝑖|𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)𝑃 (𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)

𝑃 (𝑥𝑖|𝑧𝑖 = 𝑆;𝜇, 𝜎2)𝑃 (𝑧𝑖 = 𝑆;𝜇, 𝜎2) + 𝑃 (𝑥𝑖|𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)𝑃 (𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)

(C.8)

Equations C.7, C.8 are completely defined by Eqs. C.3, C.4, C.5.
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C.2 Maximization Step

In the maximization step (M step for short) we use the membership probabilities

from the E step as weights to update the parameters of the model. The log-likelihood

function for the latent variables is:

𝜃 = arg max
𝜃

𝑚∑︁
𝑖=1

∑︁
𝑧𝑖=𝑆,𝐵

𝑄
(︀
𝑧𝑖
)︀

log
𝑃 (𝑥𝑖, 𝑧𝑖|𝜃)

𝑄 (𝑧𝑖)
(C.9)

Using the Bayes rule we get:

𝜃 = arg max
𝜃

𝑚∑︁
𝑖=1

∑︁
𝑧𝑖=𝑆,𝐵

𝑄
(︀
𝑧𝑖
)︀

log
𝑃 (𝑥𝑖|𝑧𝑖 = 𝑗, 𝜃)𝑃 (𝑧𝑖 = 𝑗|𝜃)

𝑄 (𝑧𝑖)
(C.10)

Which simplifies to:

𝜃 = arg max
𝜃

𝑚∑︁
𝑖=1

𝑤𝑆
𝑖 log

𝑃 (𝑥𝑖|𝑧𝑖 = 𝑆;𝜇, 𝜎2)𝑃𝑆

𝑤𝑆
𝑖

+ 𝑤𝐵
𝑖 log

𝑃 (𝑥𝑖|𝑧𝑖 = 𝐵;𝐾,𝜇𝑠)𝑃𝐵

𝑤𝐵
𝑖

(C.11)

Estimating 𝜇

Taking the derivative of the argument in C.11 with respect to 𝜇 we get:

𝜕

𝜕𝜇
(·) =

𝜕

𝜕𝜇

𝑚∑︁
𝑖=1

−𝑤𝑆
𝑖 (𝑥

𝑖 − 𝜇)
2

2𝜎2
=

𝑚∑︁
𝑖=1

𝑤𝑆
𝑖𝑥

𝑖 − 𝜇

𝜎2
(C.12)

And, setting it to zero we get:

𝜇 =

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆𝑥

𝑖

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆

(C.13)

Estimating 𝜎2

Taking the derivative of the argument in C.11 with respect to 𝜎2 we get:

𝜕

𝜕𝜎2
(·) =

𝜕

𝜕𝜎2

𝑚∑︁
𝑖=1

−1

2
𝑤𝑆

𝑖 log 𝜎2 − 𝑤𝑖
𝑆

(𝑥𝑖 − 𝜇)
2

2𝜎2
=

𝑚∑︁
𝑖=1

𝑤𝑆
𝑖 (𝑥

𝑖 − 𝜇)
2

2𝜎2
− 1

2
𝑤𝑖

𝑆 (C.14)
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And, setting it to zero we get:

𝜎2 =

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆(𝑥𝑖 − 𝜇)

2

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆

(C.15)

Estimating 𝜇𝑠

First, to recover 𝜇𝑠 we take derivative of the argument in C.11 with respect to 𝜇𝑠:

𝜕

𝜕𝜇𝑠

(·) =
𝜕

𝜕𝜇𝑠

𝑚∑︁
𝑖=1

−𝑤𝑖
𝐵 log 𝜇𝑠 − 𝑤𝑖

𝐵

𝑥𝑖

𝜇𝑠

= −𝑤𝑖
𝐵𝐾

1

𝜇𝑠

+ 𝑤𝑖
𝐵

𝑥𝑖

𝜇𝑠
2

(C.16)

Setting it to zero we get:

𝜇𝑠 =

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵𝑥

𝑖

𝐾
𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

(C.17)

Which we update with the estimated 𝐾 as described next.

Estimating 𝐾

Here, we derive a maximum likelihood estimator inspired by [114]. Taking the deriva-

tive of the argument in C.11 with respect to 𝐾:

𝜕

𝜕𝐾
(·) =

𝜕

𝜕𝐾

𝑚∑︁
𝑖=1

−𝑤𝑖
𝐵𝐾 log 𝜇𝑠 − 𝑤𝑖

𝐵 log Γ(𝐾) + 𝑤𝑖
𝐵(𝐾 − 1) log 𝑥𝑖 − 𝑤𝑖

𝐵𝑥
𝑖

𝜇𝑠

(C.18)

Using Eqs. C.17, C.18 and combining terms we get:

𝜕
𝜕𝐾

(·) =

= 𝜕
𝜕𝐾

𝑚∑︀
𝑖=1

⎧⎨⎩− log Γ(𝐾) + 𝐾

⎡⎣ 𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

− log

(︂
𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

)︂
− 1

⎤⎦+ 𝐾 log

(︂
𝐾

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

)︂⎫⎬⎭
=

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

− log

(︂
𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

)︂
− Ψ(𝐾) + log

(︂
𝐾

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

)︂
(C.19)
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here, Ψ(𝐾) is the digamma function. The maximum likelihood estimator developed

in [113, 114] requires the second derivative as well:

𝜕2

𝜕𝐾2
(·) =

1

𝐾
− Ψ′(𝐾) (C.20)

Finally, the iterative solution to recover 𝐾 is based on [113]:

1

𝐾𝑛𝑒𝑤
=

1

𝐾
+

1

𝐾2

𝜕
𝜕𝐾

(·)
𝜕2

𝜕𝐾2 (·)
(C.21)

Which is:

1

𝐾𝑛𝑒𝑤
=

1

𝐾
+

1

𝐾2

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

− log

(︂
𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

)︂
− Ψ(𝐾) + log

(︂
𝐾

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

)︂
1
𝐾
− Ψ′(𝐾)

(C.22)

In our solution we iterate over Eq. C.22 5 times. Similarly to [114] we initialize the

iterations with:

𝐾0 =
0.5

log

(︂
𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

)︂
−

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log 𝑥𝑖

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

(C.23)

Estimating 𝑃𝑆, 𝑃𝐵

To recover the prior probabilities we take the derivative of the argument in C.11 with

respect to 𝑃𝑆 and 𝑃𝐵 to get:

𝜕
𝜕𝑃𝑆

(·) = 𝜕
𝜕𝑃𝑆

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆 log𝑃𝑆 = 1

𝑃𝑆

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆

𝜕
𝜕𝑃𝐵

(·) = 𝜕
𝜕𝑃𝐵

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵 log𝑃𝐵 = 1

𝑃𝐵

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

(C.24)

To impose the constraint 𝑃𝑆+𝑃𝐵 = 1 we add a Lagrangian term (with a 𝛽 coefficient):

ℒ(𝑃𝑆, 𝑃𝐵) =
𝑚∑︁
𝑖=1

𝑤𝑖
𝑆 log𝑃𝑆 + 𝑤𝑖

𝐵 log𝑃𝐵 + 𝛽 (𝑃𝑆 + 𝑃𝐵 − 1) (C.25)
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This adds a 𝛽 term to Eqs. C.24. Setting the updated Eqs. C.24 to 0 we get:

𝑃𝑆 = −1
𝛽

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆

𝑃𝐵 = −1
𝛽

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

(C.26)

Enforcing 𝑟 + 𝑏 = 1 results in 𝛽 = −𝑚 such that:

𝑃𝑆 = 1
𝑚

𝑚∑︀
𝑖=1

𝑤𝑖
𝑆

𝑃𝐵 = 1
𝑚

𝑚∑︀
𝑖=1

𝑤𝑖
𝐵

(C.27)

C.3 Summary

∙ The Expectation step is defined by Eqs. C.7, C.8.

∙ The Maximization step is defined by Eqs. C.13, C.15, C.17, C.27, and the iter-

ative algorithm in Eqs. C.22, C.23.
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