We present the design, implementation, and evaluation of Van Atta Acoustic Backscatter (VAB), a technology that enables long-range, ultra-low-power networking in underwater environments. At the core of VAB is a novel, scalable underwater backscatter architecture that bridges recent advances in RF backscatter (Van Atta architectures) with ultra-low-power underwater acoustic networks. Our design introduces multiple innovations across the networking stack, which enable it to overcome unique challenges that arise from the electro-mechanical properties of underwater backscatter and the challenging nature of low-power underwater acoustic channels. We implemented our design in an end-to-end system, and evaluated it in over 1,500 real-world experimental trials in a river and the ocean. Our evaluation demonstrates that VAB achieves a communication range that exceeds 300m in round trip backscatter across orientations (at BER of 10e−3). We compared our design head-to-head with past state-of-the-art systems, demonstrating a 15× improvement in communication range at the same throughput and power.
Datasets, receiver algorithms, and hardware tutorials for the VAB project can be found at the link above.