• Login
  • Register

Work for a Member company and need a Member Portal account? Register here with your company email address.

Publication

A Safe Harbor for AI Evaluation and Red Teaming

Copyright

© 2021 Knight First Amendment Institute

David Plunkert courtesy of Knight First Amendment Institute. 

Artificial Intelligence (cs.AI), arXiv:2403.04893 [cs.AI] (or arXiv:2403.04893v1 [cs.AI] for this version) https://doi.org/10.48550/arXiv.2403.04893 | Shayne Longpre* 1 Sayash Kapoor** 2 Kevin Klyman** 3 Ashwin Ramaswami 4 Rishi Bommasani 3 Borhane Blili-Hamelin 5 Yangsibo Huang 2 Aviya Skowron 6 Zheng-Xin Yong 7 Suhas Kotha 8 Yi Zeng 9 Weiyan Shi 10 Xianjun Yang 11 Reid Southen Alexander Robey

Abstract

Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major AI developers commit to providing a legal and technical safe harbor, indemnifying public interest safety research and protecting it from the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI. 

Related Content