Jaques, N., Rudovic, O., Taylor, S., Sano, A., and Picard, R. Proceedings of Machine Learning Research, 48, 17-33. August 2017.
Work for a Member company and need a Member Portal account? Register here with your company email address.
Aug. 20, 2017
Jaques, N., Rudovic, O., Taylor, S., Sano, A., and Picard, R. Proceedings of Machine Learning Research, 48, 17-33. August 2017.
Predicting a person’s mood tomorrow, from data collected unobtrusively using wearable sensors and smartphones, could have a number of beneficial clinical applications; however, this prediction is an extremely challenging problem. Past approaches often lack the accurate and reliable performance necessary for real-world applications. We posit that this is due to the inability of traditional, one-size- fits-all machine learning models to account for individual differences. To overcome this, we treat predicting tomorrow’s mood for a single person as one task, or problem domain. We then adopt Multitask Learning (MTL) and Domain Adaptation (DA) approaches to learn a model which is customized for each person, while still being able to benefit from data across the population. Empirical results on real-world, continuous monitoring data show that the new personalized models — a MTL deep neural network, and a Gaussian Process with DA — both significantly outperform their generic counterparts, providing substantial performance enhancements in automatic prediction of continuous levels of tomorrow’s reported mood, stress, and physical health based on data through today.