• Login
  • Register

Work for a Member company and need a Member Portal account? Register here with your company email address.

Thesis

Learning Plan Networks in Conversational Video Games

Orkin, J. "Learning Plan Networks in Conversational Video Games"

Abstract

We look forward to a future where robots collaborate with humans in the home and workplace, and virtual agents collaborate with humans in games and training simulations. A representation of common ground for everyday scenarios is essential for these agents if they are to be effective collaborators and communicators. Effective collaborators can infer a partner's goals and predict future actions. Effective communicators can infer the meaning of utterances based on semantic context. This thesis introduces a computational cognitive model of common ground called a Plan Network. A Plan Network is a statistical model that provides representations of social roles, object affordances, and expected patterns of behavior and language. I describe a methodology for unsupervised learning of a Plan Network using a multiplayer video game, visualization of this network, and evaluation of the learned model with respect to human judgment of typical behavior. Specifically, I describe learning the Restaurant Plan Network from data collected from over 5,000 players of an online game called The Restaurant Game.

Related Content