Kajale, S.N., Nguyen, T., Chao, C.A. et al. Current-induced switching of a van der Waals ferromagnet at room temperature. Nat Commun 15, 1485 (2024). https://doi.org/10.1038/s41467-024-45586-4
Work for a Member company and need a Member Portal account? Register here with your company email address.
Kajale, S.N., Nguyen, T., Chao, C.A. et al. Current-induced switching of a van der Waals ferromagnet at room temperature. Nat Commun 15, 1485 (2024). https://doi.org/10.1038/s41467-024-45586-4
Recent discovery of emergent magnetism in van der Waals magnetic materials (vdWMM) has broadened the material space for developing spintronic devices for energy-efficient computation. While there has been appreciable progress in vdWMM discovery, a solution for non-volatile, deterministic switching of vdWMMs at room temperature has been missing, limiting the prospects of their adoption into commercial spintronic devices. Here, we report the first demonstration of current-controlled non-volatile, deterministic magnetization switching in a vdW magnetic material at room temperature. We have achieved spin-orbit torque (SOT) switching of the PMA vdW ferromagnet Fe3GaTe2 using a Pt spin-Hall layer up to 320 K, with a threshold switching current density as low as Jsw=1.69 × 10^6 A cm -2 at room temperature. We have also quantitatively estimated the anti-damping-like SOT efficiency of our Fe3GaTe2/Pt bilayer system to be E DL=0.093, using the second harmonic Hall voltage measurement technique. These results mark a crucial step in making vdW magnetic materials a viable choice for the development of scalable, energy-efficient spintronic devices.