• Login
  • Register

Work for a Member company and need a Member Portal account? Register here with your company email address.

Project

Gender Shades

Information for press

  1. Overview
  2. People
  3. Images, captions, and license information
  4. Video
  5. FAQ
  6. Contact information
  1. Overview

    Recent studies demonstrate that machine learning algorithms can discriminate based on classes like race and gender. In this work, we present an approach to evaluate bias present in automated facial analysis algorithms and datasets with respect to phenotypic subgroups. Using the dermatologist-approved Fitzpatrick Skin Type classification system, we characterize the gender and skin type distribution of two facial analysis benchmarks, IJB-A and Adience. We find that these datasets are overwhelmingly composed of lighter-skinned subjects (79.6% for IJB-A and 86.2% for Adience), and introduce a new facial analysis dataset which is balanced by gender and skin type.

    We evaluate three commercial gender classification systems using our dataset and show that darker-skinned females are the most misclassified group (with error rates of up to 34.7%). The maximum error rate for lighter-skinned males is 0.8%. The substantial disparities in the accuracy of classifying darker females, lighter females, darker males, and lighter males in gender classification systems require urgent attention if commercial companies are to build genuinely fair, transparent, and accountable facial analysis algorithms. 

  2. People

    Joy Buolamwini, Lead Author
    Timnit Gebru, PhD, Co-Author
    Dr. Helen Raynham, Clinical Expert
    Deborah Raji, Data Opps
    Ethan Zuckerman, Advisor

  3. Images, captions, and license information

  4. Video

  5. FAQ

  6. Contact information

    MIT Media Lab Communications group
    press@media.mit.edu