
Derivation of the Fourier Transform of the Mask
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Supplement to SIGGRAPH 2007 paper [1]

1 Derivation
This analysis is done for a 1D mask placed in front of a 1D sensor to capture a 2D light
field.

Let v be the total distance between the aperture and the sensor and d be the distance
between the mask and the sensor. Define β = d

v . From Figure 1, if we place the 1D
code c(y) at a distance d from the sensor, the resulting 2D light field gets attenuated by
the 2D mask m(x,θ) given by

m(x,θ) = c(βθ +(1−β )x). (1)

As we will derive below, the Fourier transform of the mask lies on a line in the 2D
Fourier light field space.

Let C( fy) be the 1D Fourier transform of c(y)

C( fy) =
∫ ∞

−∞
c(y)exp(− j2π fyy)dy (2)

and let M( fx, fθ ) be the 2D Fourier transform of m(x,θ):

M( fx, fθ ) =
∫ ∞

−∞

∫ ∞

−∞
m(x,θ)exp(− j2π fxx)exp(− j2π fθ θ)dxdθ . (3)

We wish to find the expression of M( fx, fθ ) in terms of C(y).
Let

y = βθ +(1−β )x (4)

Use auxiliary variable
z = (1−β )θ −βx (5)

Define
µ =

1√
β 2 +(1−β )2

(6)

Then
θ = µ2(βy+(1−β )z) (7)
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Figure 1: Schematic showing a 1D code place in front of a 1D sensor to capture a 2D
light field. The light field is parameterized as twin-plane, with the x plane aligned with
the sensor and the θ plane aligned with the aperture.
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x = µ2((1−β )y−β z) (8)

Jacobian

J = det

[
∂θ
∂y

∂θ
∂ z

∂x
∂ y

∂x
∂ z

]
(9)

J = µ2 (10)

By change of variables, we have

M( fx, fθ ) = J
∫ ∞

−∞

∫ ∞

−∞
c(y)exp(− j2π fyy)exp(− j2π fzz)dydz (11)

Substituting x and θ from (7) and (8) in (3), and comparing common terms, we get

fy = µ2( fx(1−β )+ fθ β ) (12)

fz = µ2(− fxβ + fθ (1−β )) (13)

Integrating out z term will give a δ term. Thus

M( fx, fθ ) = JC( fy)δ ( fz) (14)

Now substitute tanα = β
1−β

Then sinα = µβ and cosα = µ(1−β )
Substituting in equation for fy, we get

fy = µ( fx cosα + fθ sinα) (15)

Simplifying δ ( fz), we get

δ ( fz) = δ ( fθ cosα− fx sinα) (16)

Finally

M( fx, fθ ) = µ2C(µ( fx cosα + fθ sinα))δ ( fθ cosα− fx sinα) (17)

The δ function constraints the 2D Fourier transform of mask to lie along a line
given by fθ cosα− fx sinα = 0

Using this constraint the above equation can be simplified to

M( fx, fθ ) = µ2C(µ
√

f 2
x + f 2

θ )δ ( fθ cosα− fx sinα). (18)

Thus,

tanα =
β

1−β
=

d
v−d

. (19)

and
µ =

1√
β 2 +(1−β )2

=
1√

(d/v)2 +(1− (d/v))2
(20)
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1.1 Practical Design
In a practical design, first α is calculated using the frequency resolution in θ , fθR and
the bandlimit fx0 of the light field in the spatial dimension. fθR is relate to the size of
the aperture A. fθR = 1/A.

tanα =
fθR

2 fx0
(21)

Once we know α and the total distance between the sensor and the aperture v,
we can find d using (19). The fundamental frequency can be obtained using (18) by
substituting fx = 2 fx0 and fθ = fθR

f0 = µ
√

4 f 2
x0 + f 2

θR (22)

In practice, µ is close to 1 and α is ≈ 4−5 degrees.
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