Derivation of the Fourier Transform of the Mask

for Optical Heterodyning

Supplement to SIGGRAPH 2007 paper [1]

1 Derivation

This analysis is done for a 1D mask placed in front of a 1D sensor to capture a 2D light

field.

Let v be the total distance between the aperture and the sensor and d be the distance
between the mask and the sensor. Define § = %. From Figure 1, if we place the 1D
code c(y) at a distance d from the sensor, the resulting 2D light field gets attenuated by

the 2D mask m(x, 0) given by
m(x,0) =c(BO+(1—B)x).
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As we will derive below, the Fourier transform of the mask lies on a line in the 2D

Fourier light field space.
Let C(fy) be the 1D Fourier transform of ¢(y)
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and let M(f, fo) be the 2D Fourier transform of m(x, 6):

M(fifo) = [ [ m(x.6)exp(~j2mfx)exp(—j2mo0)drde.

We wish to find the expression of M(f;, fg) in terms of C(y).
Let

y=B0+(1—-pB)x
Use auxiliary variable
z=(1-B)0—px
Define |
S
Then

0 =u*(By+(1-B)2)
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Schematic Layout of Lens, Mask and Sensor
Mask = c(y) 1D Sensor

Main Lens 1

y=p6+(1-p) x
B=dN

Figure 1: Schematic showing a 1D code place in front of a 1D sensor to capture a 2D
light field. The light field is parameterized as twin-plane, with the x plane aligned with
the sensor and the 0 plane aligned with the aperture.



x=u*((1-B)y—B2) ®)

Jacobian
26 96
J:detl oo 1 ©9)
dy 0z
J=u? (10)
By change of variables, we have
Mfifo)=I [ [ c)exp(-p2afy)exp(—2nfa)dydz (1)
Substituting x and 6 from (7) and (8) in (3), and comparing common terms, we get
fy =12 (fu(1=B)+ foB) (12)
fo= W (=fB+fo(1-B)) (13)

Integrating out z term will give a 6 term. Thus

M(fx: fo) = JC(£,)8(f2) (14)

Now substitute tan ot = %
Then sinat = uff and cosa = (1 —f3)
Substituting in equation for f;, we get

fy =u(frcosa+ fosino) (15)
Simplifying §(f;), we get
5(/.) = 3(focosa — fesina) (16)
Finally
M(fx. fo) = W*C(1(frcosa+ fosina))8(focos o — fisinar) a7

The & function constraints the 2D Fourier transform of mask to lie along a line
given by fgcoso — fysina =0
Using this constraint the above equation can be simplified to

M(fs, fo) = W>C(ur/ f2+ £3)8(focosa — fysina). (18)
Thus,
tanazlfﬁzviid. (19)
and ) ]
u = (20)
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1.1 Practical Design

In a practical design, first ¢ is calculated using the frequency resolution in 6, fgg and
the bandlimit f, of the light field in the spatial dimension. fgg is relate to the size of
the aperture A. fogr = 1/A.

for
2fx0

Once we know « and the total distance between the sensor and the aperture v,
we can find d using (19). The fundamental frequency can be obtained using (18) by
substituting fy = 2f;0 and fg = for

fo=u\/ALH+ for (22)

In practice, u is close to 1 and ¢« is ~ 4 — 5 degrees.

tanox =

2y
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