to appear, 1993 AVIOS Conference, San Jose CA.

Speech Recognition Architectures for Multimedia Environments

Eric Ly1 , Chris Schmandt and Barry Arons

Speech Research Group
MIT Media Laboratory
20 Ames Street, Cambridge MA 02139
ly @media-lab.mit.edu

1 Abstract

Computer workstations have recently become powerful
enough to support speech recognition entirely in soft-
ware, but speech recognizers still vary in their function-
ality, and each vendor offers their own programmatic
interface. Developing recognition applications currently
means writing to non-portable protocols. As new
improved recognizers become available, such applica-
tions will need to be rewritten for new protocols. A rec-
ognition server can abstract such differences from client
applications, while supporting the use of different
classes of recognizers available today.

This paper describes the design and implementation of
an asynchronous recognition server; the asynchronous
server allows a client application to continue operation
and possibly attend to other input and output events
while waiting for recognition to complete. Its internal
architecture is based on an object-oriented engine appli-
cation programming interface (API). The server is
designed to support speaker-independent - connected-
speech recognition and speaker-dependent, isolated-
word recognition paradigms, while offering applications
a consistent programmatic interface for accessing this
functionality. As recognition engines with better perfor-
mance atrive, they can be incorporated into to the server,
via a standardized engine API, and automatically
become available to all client applications without modi-
fication.

2 Motivations and Applications

Today, sophisticated multimedia environments include

not only graphical input but also audio input, and appli-
cations employing the use of speech recognition are
beginning to appear in such environments. Unfortu-
nately, while many of the state-of-the-art recognition
systems offer similar functionality, they also have non-

1. The author is currently affiliated with Stanford University
but can still be reached at the above email address.

standard programmatic interfaces. These systems also
assume that recognition will be the primary audio func-
tion, seizing control of the entire audio input stream and
in some cases the computational resources of the work-
station. For multimedia environments, these assumptions
make recognizers an unfriendly component in a commu-
nity of mixed and shared resources. While graphical
window systems already have standard interfaces [8],
application developers using speech recognition cannot
yet write to portable interfaces. Adapting an application
for a new recognizer may involve a significant rewrite of
code. In addition, more work may be required to obtain
asynchronous operation for recognizers which have been
designed to take program control from an application
until a word is recognized.

More important, multimedia environments also invite
the use of recognition with other audio functions, such as
recording and playing back messages and monitoring
environmental speech [10, 6]. Speech recognizers must
therefore co-exist as one of many resources in an asyn-
chronous, event-driven environment, rather than being
only the primary one. For example, a user may want to
record, playback and send audio messages from his
desktop but may also want to drive the window system
using speech commands [9, 4, 5]. Speech recognition
may be turned on or off depending on whether the user is
recording a message. A recognizer must cooperate by
sharing the audio input stream with other applications
and by working in an asynchronous manner.

Like window system servers, a recognition server can
provide a suite of functionality based on an application’s

~needs.-while-allowing .a device-independent, asynchro-

nous means of accessing such functionality. Such a
server can also offer multiple client applications the
simultaneous ability to perform speech recognition,
intermixed with playback/record functions, from a single
audio stream.

The server concept described in this paper has already
been used to provide recognition capability for several

projects, including the a voice-controlled window sys-
tem [9], a speech-only hypermedia system [2] and a
hand-held note taker [11]. The current version of the
server was implemented for a work group messaging
system call Chatter, which is used over a telephone [7].
This system runs on a workstation, where telephone
audio is captured, recognized and processed. These
applications are all examples in which the audio stream
is used not only to recognize user commands but also to
record and play back audio files or messages.

An early predecessor of this server relied on external
recognition hardware communicating asynchronously to
a single client [10]. This hardware configuration was
also used in a subsequent version of the server described
in [3]; it provided a speaker-dependent recognizer for
client applications. This paper describes the work on the
internal architecture of the recognition server, making it
possible for the server to be outfitted with several recog-
nizers and yet retaining the same API to external clients.
The server architecture can both support software-based
and hardware-based speech recognizers, although soft-
ware-based recognizers are only currently used.

3 Design Issues

For the recognition server to be general enough to
accommodate many classes of speech recognition algo-
rithms, it must be able to deal with similarities and dif-
ferences of recognition technologies available today. The
main differences among recognition technologies can be
represented along the three dimensions of speaker-
dependence, connectedness of the recognition, and the
recognizer’s possible vocabulary size.

words

T

many words

few words

isolated
keyword

adaptive
connected
independent

continuity
speaker-
dependence

Figure 1: Recognizer functionality space

Each point in this space can be considered to represent a
particular class of recognizer. For example, it is possible
to have a large-vocabulary, continuous, speaker-depen-
dent recognizer. Each point is also distinguished by its

_own operational requirements; some recognizers require

language grammars while others require the training of
word templates.

The server acts as an intermediary between client appli-
cations and the actual speech recognizers, henceforth
called recognition engines. The server must therefore
provide for clients to select the capability they want to
use and to relay any additional data between the engine
and client necessary for successful operation in a device-
independent manner.

Although each point is a possible class of recognizer,

- current recognizers fall into roughly three categories:

» Speaker-dependent, isolated-word, small-vocabulary.
Recognizers in this class are perhaps the simplest in
implementation. Users of such recognizers supply
training samples by saying each word of the vocabu-
lary several times, and these samples are used as tem-
plates in matching speech at the recognition stage. A
special kind of recognizer in this class includes the
word-spotting recognizer, which attempts to pick up all
or any keywords in a specified vocabulary from a con-
tinuous speech stream [14]. Such recognizers may be
more useful in certain domains where commands may
be given as complete sentences, in which case they can
be used to pick out the essential information without
much regard to analysis of syntactic structure.

Speaker-independent, isolated-word, small-vocabu-
lary. These recognizers are good for simple recogni-
tion tasks where accuracy and widespread speaker
applicability is desired. Perhaps the most prevalent use
of these recognizers are with over-the-phone consumer
services, where particular items from a menu, a binary
choice, or even a digit are to be spoken by the caller.

Speaker-independent, connected-word, large-vocabu-
lary. This class of recognizers represents the state-of-
the-art in current speech recognition technology.
Speech samples are collected from a large set of speak-
ers and statistics of word frequencies and phoneme
characteristics are distilled. Such recognizers typically
use some form of Hidden Markov Models on a con-
straint.grammar as the basic recognition algorithm.

It is therefore useful for the server to provide roughly
three sets of functionality for clients along these classes.

To accomplish these ends, the server’s architecture is
constructed in an object-oriented inheritance-based man-
ner. The motivation for organizing the server architecture
in this way stems from the differing capabilities among

recognition engines. The server must provide a. common
set of functionality regardless of the engine employed,
which implies that its implementation must make up for
deficiencies of particular engines. At the same time, the
server must also be able to defer to those engines which
providing their own (or better) means of performing part
of the recognition task. Also, while all engines of a par-
ticular class from different vendors are different in how
they are accessed, they are in many ways structurally the
same except for minor differences. Different classes of
recognizers may have significantly different methods of
usage. For example, a recognition result from a con-
nected-word recognizer may be an entire string of
words, but an isolated-word recognizer result consists of
only a single word.

The current design of the server already incorporates
three recognition engines—from Texas Instruments [13],
Command Corp. [5], and Agog [4]. The TI recognizer
offers speaker-independent, connected-word, large
vocabulary recognition. The Command Corp recognizer,
called IN>, offers speaker-dependent, keyword recogni-
tion, while the Agog engine offers speaker-dependent,
isolated word and small vocabulary recognition.

A version of the server is built for each engine, so there
are currently three distinct recognition servers, all with
the same communication protocol. It is currently up to
the user to invoke the correct server before running the
client applications.

4 Using the Recognition Server

The recognition server operates as a separate process and
communicates with clients over Unix sockets. Connec-

Code

tions. and requests to the server are performed using
remote procedure calls from the client to the recognition
server, and recognition results are returned asynchro-
nously over a socket.

4.1 Transport mechanism

Messaging between clients and the server relies on a set
of tools developed described in [3] called the Socket
‘Manager (SM) and the Byte Stream Manager (BSM),
which simplifies the implementation of inter-process
communication (IPC). SM handles low-level connection
I/O, supporting a callback mechanism for connection
initiation, termination and data transfer. BSM is an
abstraction above SM, providing an RPC compiler and
run-time library that supports synchronous and asyn-
chronous calls. On each end, application code uses the
BSM to communicate with the other process. The client-
server architecture is illustrated in this diagram:

Client Process Server Process
Client Recog-
Code BSM SM & IPC 9» SM | BSM nizers

| Client _
Library

Figure 2: Client-server model

The client protocol consists chiefly of the following
areas:

* Establishing and closing a connection with the server.

Comments

void r_recognizer_ev(int fd, void *data,
char *utterance)
{
printf ("%s was recognized.\n", utterance);

}

int main(int argc, char *argvl])
{
int f£d4;

fd = r_open{"localhost", R_TISR};

r_set_filename(fd, "grammar.tisr");

r_register_callback(fd, R_RECOGNIZE_EV,
recognizedEvent, NULL);

r_start_recognition(fd);

r_main_loop () ;

return 0;

Callback function for receiving recognition events
Simply prints what was recognized

Main function

Opens a connection to the recognition server
Sets the grammar or vocabulary file to use
Registers the above function to receive recognition events

Tells the server to begin recognizing
Begin the event loop

Figure 3: Using the recognition server

Before recognition services can be handled, clients
must establish a-connection to the server. Opening a
connection gives the client access to one recognition
engine. The client must also specify the class of recog-
nizer desired. Currently, this specification is simply
given by the name of the engine. A connection to the
server is represented as an integer Unix file descriptor,
which is used to address the engine in all subsequent
calls. When the client is finished with recognition, the
connection can be closed.

Setting vocabulary files for the engine. All types of
recognizers require some configuration file which
specify the vocabulary to be recognized. Connected-
speech recognizers will usually require a grammar file.
Before recognition can be performed, a client must tell
the server which vocabulary or grammar file to use.
Because such files are still largely engine-specific, the
server simply passes this information onto the engine,
so the meaning and format of the vocabulary is engine-
dependent. The server does not establish any standards
for the format of such files.

« Starting and stopping recognition. A message to the
server starts or stops recognition. When recognition is
active, audio data is passed to the engine and any rec-
ognition are captured and delivered to the client.

If the given engine supports vocabulary subsetting, the
server has a protocol for performing subsetting. This
capability is used to improve the accuracy of recogni-
tion. For isolated-word recognizers, vocabulary words
are represented as integers mapped into a vocabulary
word table known to the client. For connected-word rec-
ognizers, the subset is usually given by the top level
grammar symbol(s). The current implementation only
supports subsetting on a per client basis, and no provi-
sions are made for different applications having different
subsets. See “Conclusions” for ideas on future work.

4.2 Receiving recognition results

Recognition results are delivered through the asynchro-
nous callback mechanism provided by the transport sub-
system. Such results are also known as recognition
“events.” When recognition is-enabled-and-a-recognized
result is detected in the audio stream, the server gener-
ates an event, and the client’s callback function is
invoked with the result so it can be processed.

The server has two types of recognition events: one is a
simplified result which only returns what was recog-
nized; the other provides the recognized input and more
detailed information such as confidence measures and

secondary hypotheses. To obtain these events, clients can
register a callback to receive one or both of these events.
When registered, the client’s callback will be invoked
when a recognition event is detected. For isolated-word
recognizers, results are integers while for connected-
word recognizers, results are returned as strings repre-
senting the actual words spoken.

4.3 Training

For engines requiring training templates, the server has a
protocol for performing training. sessions and obtaining
templates. For training to occur, the client application
must be aware that its recognition engine requires it. It is
necessary because training almost always requires user
interaction and feedback at the top level of the interface.

When training is initiated by the client, a training
“begin” event will be generated each time a training tem-
plate is expected from the user. This event can be used
by the client to prompt the user to speak. This event is
generated several times for one word, since many recog-
nizer require multiple training sessions to generate a reli-
able template.

When training has completed, a training “end” event is
sent to the client. If a sequence of words is to be trained
during the training session, the client can then initiate a
new training session when it receives the “end” event.

The protocol also includes calls to load and save tem-
plates once they are trained.

5 Server Implementation

To support the multitude of recognition engines, the
server uses an object-oriented design, in which the core
functionality is embedded into an abstract root class, and
actual recognizers are implemented as subclasses of this
root class. These subclasses inherit functionality from
the root class that they cannot provide, and they override
functionality if their own is better. More often however,
implementations of engines will not only use the core
functionality but also provide their own to perform addi-
tional initialization or processing. For different classes of

‘recognizers, abstract subclasses of the root class can be

specified to provide a separate set of core functionality
associated with that particular class of recognizers. All
of these concepts can be represented naturally in an
objected-oriented, inheritance hierarchy.

To enable the use of different brands of recognizers in
the server, an internal engine API is also defined to ease

Class definition

Comments

class Recognizer
{

Recognizer (int connfd, int sfd);
virtual ~Recognizer();

virtual int fd(};

virtual void setUser (const char *aUser);
virtual void setDataFile(const char *aFile);
virtual void startAudio();

virtual void stopaAudio();

virtual BOOL wantsAudio():

virtual int frameSize();

virtual void prepareReceivedudio();

virtual void receivedudio(const bsm _bytes *buf);

virtual void finishReceiveAudio();

virtual void loadFile();
virtual void saveFile();

virtual void startRecognition();
virtual void stopRecognition();

Initializes the recognizer with connection and audio file
descriptors
Deallocates memory for the recognizer

Called by the server to initiate audio delivery

Called after audio delivery is suspended

Returns true if recognizer wants audio

Implemented by engines to tell the server the buffer size
the engine desires for audio

Called before the first audio buffer is delivered so the
engine can perform any necessary initialization
Engines implement this function to receive audio
Implemented by engines to perform any needed cleanup

Invoked by the server to load the vocabulary file

Figure 4: Core Recognizer engine API

the process of incorporating new recognition engines
into the server. The engine API is specified as a set of
member functions of the abstract Recognizer superclass.
Future providers of recognizers can also give program-
matic interfaces that make their incorporation possible
more straightforward. As recognition engines with better
performance become available, they can be added to the
server, via this standardized engine API, and automati-
cally become available to all applications which use the
server without modification.

An abstract Recognizer class forms the root class. It
implements functionality common to all recognizers,
regardless of their type, such as the mechanisms for han-
dling connection control with the client, device-indepen-
dent means of receiving audio data, converting between
the necessary audio formats, loading and saving of data
files, and the maintenance of state of the recognition pro-
cess. Then, abstract subclasses of Recognizer are defined
for each of the three common types of recognizer.

Figure 3 shows the server’s internal class hierarchy. The
WordRecognizer class implements the speaker-depen-
dent, isolated-word, small-vocabulary recognizer, and
the ConnectedRecognizer a speaker-independent, con-
nected-word, large-vocabulary recognizer. A subclass of
WordRecognizer or ConnectedRecognizer serves as
“glue” for an engine and server. The IndependentRecog-

nizer subclass is not shown because no recognition
engines are yet implemented using it currently. The three
lowest classes in the hierarchy actually implement the
current recognition engines.

Recognizer
(; 1
WordRecognizer Connected-
Recognizer
— — |

AgogRecognizer In3Recognizer TIRecognizer

Figure 5: Internal recognizer hierarchy

The various subclasses implement the protocol neces-
sary for the operation of that recognizer class. For exam-

ple, the WordRecognizer.class specifies that training is to

begin with a message to startTraining, then a train
message to train individual words and finally a stop-
Training message to end training. The AgogRecog-
nizer simply overrides these calls to prepare its own
internal voice models for training. To receive audio data,
the TIRecognizer, for example, implements a
receiveAudio method defined as part of the protocol
by the Recognizer class. receiveAudio is automati-

cally invoked with audio data when the audio stream is.

turned on for recognition or training,

Each connection to the server is represented as an object
instance of a particular recognizer class, and calls to the
server are simply translated to messages to the appropri-
ate objects.

6 Interfacing to Audio Input

The server is written to cooperate with an audio server,
described in [1], which allows several applications to use
the audio device as a shared resource. The use of an
audio server allows recognition to the performed without
prohibiting other processes from using the audio stream.
The recognition server functions as a client of the audio
server, although its processing is also useful to other
applications. This diagram illustrates how the recogni-
tion server fits into the general audio server framework:

(Recognition + Audio Application]

Recognition Server AP]

Audio Server API Recognition Server

Audio Server API

Audio Server

T
Audio

/dev/audio

Figure 6: Audio application architecture

An application wanting recognition functionality can
communicate with the recognition server to receive rec-
ognition “events” found in the incoming audio stream. It
can also initiate the training of word templates to be used
for later recognition. While the server acts as intermedi-
ary between the client and audio server, a client applica-
tion can still receive and send control commands directly
to the audio server. This framework allows applications
to perform mixed-mode audio tasks, where training, rec-
ognition, record and playback can be arbitrarily inter-
mixed during their execution. '

The recognition server does not open the audio device

itself but rather relies on the audio server to read from
the audio device and deliver copies-of the audio data for
recognition analysis. In the meantime, the audio server
may also be writing audio data to a file for recording
purposes or delivering additional copies of the data to

~other applications for touch tone detection, for instance.

7 Interfacing with Recognizers

When designing programmatic interfaces for a specific
recognizer, the designer should realize that the recog-
nizer will be working in a shared-resource, asynchro-
nous configuration. This section outlines the key issues
to be .considered in designing the server’s engine API
and how the internal server architecture facilitates the
integration of new recognizers.

7.1 Receiving audio

A recognizer must work in an environment where the
audio stream is a shared resource, so it must be designed
to not require unique access to the audio input but be
able to accept audio from an arbitrary source. It is a task
of the recognition server to receive audio data from the
audio server and in turn deliver this data to the recogni-
tion engine. Several methods exist for transferring audio
to recognizers in the recognition server. The recognition
server currently supports two methods of delivering
audio.

If the engine executes as a separate process, the engine
can receive audio from a Unix named pipe. The engine
and recognition server can establish a shared pipe, and
when audio begins to arrive at the server, it can be writ-
ten to the pipe and received by the recognizer for pro-
cessing. This method was used to deliver audio to the
N3 recognizer. If the recognizer is already designed to
read from the real audio device, then it is straightforward
to change the device’s name from which audio may be
read. The drawback of this method is that it is not very
efficient because of the additional overhead involved in
context-switch time to transfer data using pipes to the
recognizer.

A more efficient means is to pass audio to the engine via

‘a function call that is provided with the engine. The

engine defines a function for receiving audio with argu-
ments to specify the location and length of data, and
when the server receives an audio buffer, it can deliver
this buffer using the function. This method was used to
provide audio to the Agog and TI recognizers. Note that
it is the responsibility of the recognizer to manage the
received audio thereafter, since the server passes only

one copy of the stream to the recognizer. The recognizer .

can either process the new buffer as soon as it is received
or save it in private buffers until the end of a speech seg-
ment is recognized. In the server’s current design, audio
will be lost if the function takes too long to return, so
recognizer’s API design should take into account the
time it takes to process a frame of audio. However, pro-
viding a call to receive audio is the most efficient means
of delivery.

Since delivery of audio can be suspended and restarted
as dictated by the external functionality of the server, the
recognizer should also provide a reset function which
initializes its internal state for a new session of recogni-
tion. The problem is that the server sends audio to the
engine only when either recognition or training is active,
and the engine may receive a buffer of audio that occurs
much later in time than the previous buffer it received. If
the engine performs recognition on these buffers as if the
audio in them were contiguous in time, it may incor-
rectly report spurious recognition results. A reset func-
tion provides the means to restart the recognizer in a
clean state after audio delivery has been suspended.

7.2 Posting recognition results

As a recognizer receives audio, it must post recognition
results to the server so that client processes may be noti-
fied of recognized speech. Since the server operates
asynchronously, reporting results from recognizer to
server must also occur asynchronously. Here, there are
three methods for recognizers to post results: the server
polls for a result; the recognizer reports results directly
from the function used to pass the recognizer audio; or
the recognizer invokes a callback to report the result.
Once the server is notified of a recognition result, it can
then generate a recognition event in the client.

In the first method, the server periodically polls the rec-
ognizer to check for any recognition events. The server
may call a function or check a variable’s value from time
to time to determine whether any results can be obtained.
This method is used to find recognition results for the
IN3 recognizer. The testing interval may be controlled by
a timer or some other periodic event. Since delivery of

audio data is a periodic event; the:server-currently-checks - =

for recognition results after several buffers have been
delivered. The drawback of this approach is twofold:
processor time is wasted on polling, and there may be a
lag time between when the recognition result is known
and when it is discovered, which may affect the interac-
tivity of the system. However, this method may be used
for recognizers that were not originally designed to be
operated asynchronously.

A more efficient method is to send recognition results as
the return value of the function used to pass in audio.
This method also assumes the particular style of audio
delivery described above, and is used to determine rec-
ognition results for the TT recognizer. In this case, the
function result can easily be checked to determine
whether something was recognized. If nothing has yet
been recognized since the last result, this condition may
be represented by an empty result. While this method
removes the inefficiency of busy waiting, it may still
result in lag response time if the audio buffer size is
large.

The best method is to use a callback mechanism. The
server registers a callback using a function in the recog-
nizer’s APL. When the recognizer computes a recogni-
tion result, it immediately notifies the server, which also
sends the client a recognition event. This method is used
to obtain recognition results from the Agog recognizer,
and it avoids the disadvantages of the first two
approaches.

8 Conclusions

Speech recognizers are beginning to move out of the
prototyping stage into application use. As part of a mul-
timedia platform, their functionality should be accessed
through a standard programmatic interface so applica-
tions do not have to be rewritten for every recognizer.
Recognizers must also cooperate with other processes
using the audio resource.

The recognition server described in this paper accom-
plishes these ends by providing the necessary abstrac-
tions and resources for recognizers to be used
effectively. It introduces an external client API and inter-
nal engine API, which are necessary for interfacing to
client applications and for integrating new engines,
respectively. This work also addresses the issues
involved in making engines more easily adaptable to this
framework.

One of the weaknesses of the current client AP is that
engines are specified for use rather than desired func-
tionality. Future directions include improving the API so

“that ‘client§ need’only to-specify recognition capabilities

they require, leaving the server to select the appropriate
engine for the task. For connected-speech recognizers,
one of the challenging issues related to this task is in
specifying a common grammar format that can be used
across all such recognizers, so that grammars do not
have to be rewritten for different engines. The challenge
is in how to map the common format to the specific for-

mat required by each engine, whose format is still differ-
ent for every other. These challenges can be met by
examining and integrating new engines to determine the
common areas of functionality among them.

As speech recognition applications become more com-
mon, it will also become necessary to coordinate recog-
nition requirements among them. Different applications
will each desire their own vocabulary and grammar, and
the server will have to dynamically update the active
vocabulary as applications begin and terminate. A mech-
anism for distributing recognition events to different
applications is also required, much as a window manager
arbitrates keyboard and mouse events among applica-
tions running simultaneously.

Acknowledgments

We would like to thank Greg Cockroft of Agog, Inc. and
Charles Hemphill of Texas Instruments for adapting
their recognizers to work with the server presented in
this paper. Lisa Stifelman also worked on earlier ver-
sions of the recognition server for use with the Voice
Navigator on the Macintosh. She also helped by review-
ing drafts of this paper.

This work was sponsored by Sun Microsystems, Inc.

References

[1] B. Arons. The design of audio servers and toolkits
for supporting speech in the user interface. Journal
of the American Voice I/O Society, 9:27-41, 1991,

[2] B. Arons. Hyperspeech: navigating in speech-only
hypermedia. In Hypertext '91, pp. 133-146, ACM,
1991.

[31 B. Arons. Tools for building asynchronous servers
to support speech and audio applications. Proceed-
ings of the ACM UIST Symposium, 1992.

[4] G. Cockroft. Saylt recognizer. Marketed by Qualix
Group, Inc., 1992,

(5] N3 Recognizer. Command Corp, Inc., 1992.
[6] D. Hindus and C. Schmandt. Ubiquitous audio:
capturing spontaneous collaboration. In CSCW ’92.

ACM, 1992.

[71 E. Ly. Chatter: a conversational telephone agent.
MIT Masters Thesis, Media Arts and Sciences Pro-

gram, 1993,

[8] R. W. Scheifler and J. Gettys. The X window sys-
tem. ACM Transactions on Graphics, 5(2):79-106,
1986.

[9] C. Schmandt, M. Ackerman and D. Hindus. Aug-
menting a window system with speech input. Com-
puter, pp. 50-56, IEEE, 1990.

[10] C. Schmandt and M. McKenna. An audio and tele-
phone server for multimedia workstations. Pro-
ceedings of the 2nd IEEE Conference on Computer
Workstations, pp. 150-160, 1988.

[11] L. Stifelman. Not just another voice mail system.
In proceedings of American Voice Input/Output
Society, pp. 21-26, 1991,

[12] L. Stifelman, B. Arons, C. Schmandt and E. Hul-
teen. VoiceNotes: a speech interface for a hand-
held voice notetaker. In proceedings of INTERCHI
’93, 1993.

[13] B. Wheatley, J. Tadlock and C. Hemphill. Auto-
matic efficiency improvements for telecommunica-
tions application grammars. First IEEE Workshop
on Interactive Voice Technology for Telecommuni-
cations Applications, 1992,

[14] L. Wilcox and M. Bush. HMM-based wordspotting
for voice editing and indexing. In Proceedings of
Eurospeech *91, pp. 25-28, 1991.

